
Separation of Coordination in a Dynamic Aspect Oriented
Framework ∗ †

M. Pinto1, L. Fuentes1, M.E. Fayad2, J.M. Troya1

1Dpto. de Lenguajes y Ciencias de la
Computación

University of Málaga
Málaga (Spain)

{pinto,lff,troya}@lcc.uma.es

2Department of Computer Science and
Engineering

University of Nebraska-Lincoln
Lincoln, NE, U.S.A

fayad@cse.unl.edu

ABSTRACT
Aspect-Oriented Programming separates in a new dimen-
sion, named aspect, those features that are spread over dif-
ferent components in a system. In this paper we present
a Dynamic AO Framework where software components and
aspects are first-order entities composed dynamically at run-
time according to the architectural information stored in a
middleware layer. As an example we describe the coordina-
tion aspect, one of the most relevant and useful aspects of
our approach, essential to develop open distributed systems.
The main functionality of this aspect is to encapsulate the
interaction protocol among a set of components.

Keywords
Aspect-Oriented Programming, Component-Oriented Pro-
gramming, Dynamic Composition, Coordination Aspect

1. INTRODUCTION
Software Engineering moves towards the development of

systems in terms of a set of interactions among more or less
detached components. This component-oriented approach
results in more reusable, extensible and adaptable software.
However, achieving these features requires an appropriate
separation of the system concerns in independent modules
which is not a straightforward task. Commonly, the same
concern happens to be spread over different modules creat-
ing undesirable dependencies among them.
Advanced Separation of Concerns (ASoC) is an attempt

to solve this problem, extending Object-Oriented Program-

∗This research was funded in part by the CICYT under
grant TIC99-1083-C02-01, and also by the telecommunica-
tion organization ”Fundación Retevisión”
†Proc. of the First International Conference on AOSD, April
2002, pp. 134-140, ACM Press, The Netherlands

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2002, Enschede, The Netherlands
Copyright 2002 ACM 1-58113-469-X/02/0004 ...$5.00.

ming and in some cases also Component-Oriented Program-
ming [2] with new dimensions of concerns, beyond ”objects”
or ”components”. Aspect-Oriented Programming (AOP) [6]
[8] is a promising ASoC methodology that introduces a new
dimension, the aspect. Aspects model those features pre-
sented along multiple components in a system that may
change or evolve independently from them.
Current AOP technologies offer different alternatives to

tackle the separation of concerns issue, that differ mainly
in three factors: the aspect definition language, the weav-
ing process, and the kind of concerns modelled as aspects.
AO languages can be aspect specific, defined explicitly to
implement one type of aspect (for instance, the synchro-
nization aspect) or extensions of general purpose languages
providing special constructions used to implement any kind
of aspects [7]. One drawback of AO languages is that the
weaving process is static, mixing component and aspect code
at compile-time. Although the resultant code is highly op-
timized, the separation of concerns and its benefits are lost
at runtime.
One promising alternative to AO languages are AO frame-

works [3] [12], specially those that incorporate the compo-
nent option. Usually, those AO frameworks model com-
ponents and aspects as separated entities which are imple-
mented in the same general purpose language. One of the
main features of AO frameworks is that the composition is
performed more or less dynamically at runtime. Despite the
fact that static weaving offers better performance, dynamic
weaving is much more flexible because of late binding be-
tween components and aspects. In AO frameworks aspects
and components entities remain separated in all the soft-
ware lifecycle, including system execution. This means that
the resulting software is more reusable and adaptable, where
aspects and components can evolve independently.
Another important issue is the kind of concerns that is

worthy to separate. Most approaches focus in the separation
of distributed system concerns such as concurrency, synchro-
nization, distribution and security. There is no doubt about
the benefits of applying AOP to these concerns, but some
application domains have particular features that cut across
the basic functionality of domain components and should
be modelled as aspects to take the advantages of AOP. Cur-
rently, much more research is needed on the definition and
implementation of what we call domain-specific aspects.
Our AO approach is a Dynamic Aspect-Oriented middle-

 <<CTComponent>>
Component

{component-aspect layer}

- ComponetID
- LocalEnvironmentSite

+ createComponent()
+ execute()
+ broadcast()

<<CTAspect>>
Aspect

{component-aspect layer}

- LocalEnvironmentSite

+ eval

<<CTVESite>>
LocalEnvironmentSite
{middleware layer}

- environmentConnections
- userSite

+ component()
+ aspect()
+ inputACComposition()
+ outputACComposition()
+ createComponent()
+ execute()
+ broadcast()

<<CTVESite>>
LocalUserSite

{middleware layer}

- userConfiguration
- context

Environment
Connections

{middleware layer}

- getAspectInfo()
- getComponentInfo()
- getInputAspects()
- getOutputAspects()

AspectInfo
{middleware layer}

- name
- type
- interfase
- implementations
- default_impl

ComponentInfo
{middleware layer}

- name
- interfase
- location
- implementation
- input_aspects
- output_aspects

1

1

1 1

1 1

CompositionInfo
{middleware layer}

- message
- aspects

+ addAspect()
+ getAspects()

1

0..*

0..* 0..*

reference
reference

MessagePropagation AspectEvaluation

ExecutionException ExecutionException

MessageInvocation

Figure 1: UML design of the Dynamic Aspect-Oriented Framework

ware Framework (DAOF). In DAOF components and as-
pects are first-order entities dynamically composed at run-
time using the composition information stored in a middle-
ware layer [11]. We use Java as the general-purpose lan-
guage to implement both components and aspects. Our ap-
proach provides the basis to separate any kind of aspects,
however we are interested in domain-specific aspects. Our
application domain is Collaborative Virtual Environments
(CVEs). In CVEs, geographically dispersed users join a
shared space that integrates all the resources they use to
collaborate [1] [13]. We model the main features of CVEs,
persistence, authentication, access control, awareness and
multiples views, as aspects that are composed at runtime
with components modelling rooms, users, collaborative tools
and documents. An extended description of all these aspects
and components can be found in [9].
Features like persistence, authentication or access control

are in the scope of any distributed application, while oth-
ers like awareness and multiple views are more specific of
collaborative domains. In order to make possible the col-
laboration of dispersed group members in collaborative en-
vironments, it is fundamental to provide awareness about
users location, the activities they are engaged and the doc-
uments they work with. Users should also perceive multi-
ple views of the environment depending on their preferences
or resource availability. This results in different views of
the same component that should be changed dynamically
at runtime. The separation of these domain-specific fea-
tures is sometimes obviated and in consequence component
crosscutting is not completely avoided.
An important contribution of our approach is that com-

ponent and aspect interfaces are detached from their im-

plementation classes. That is, as context conditions vary,
the framework picks at runtime the implementation mod-
ule that is adequate to the current context. For instance, a
CVE can be adapted to users preferences using different im-
plementations of the multiple view aspect. The class name
corresponding to a certain aspect is stored in the framework
middleware layer, in particular inside an object that refers
the architecture of the application (AA).
After describing the main characteristics of our approach,

we will focus in the coordination aspect. The coordination
aspect is one of the most interesting and useful aspects of-
fered by our proposal. This aspect encapsulates the inter-
action protocol among a set of components. The main ad-
vantage of this aspect is that components do not need to
know how to interact with external components, increasing
their reusability in different contexts. Currently we are ex-
perimenting with a working prototype that is being applied
successfully to CVEs.
The organization of this paper is as follow. Section 2

presents our DAOF approach, a component-aspect model
with dynamic composition. Section 3 introduces the sepa-
ration among computation and composition and the use of
the coordination aspect to achieve this separation. Finally,
section 4 discusses our conclusions and future work.

2. A DYNAMIC AO FRAMEWORK
Currently, Web applications in general, and CVEs in par-

ticular, need the instantiation of custom environments adapted
to user profiles. In a component-aspect based development
as we offer, this customization implies applying different
number and type of aspects for each user. In addition, the
complexity of nowadays systems imposes the challenge of

Middleware Layer

LocalEnvironmentSite

Room

execute(room,null,newUser,{user})

CVEAwar
List

execute(c1,c2,m,args){
 if (output_aspects(c1,m)
 if (input_aspects(c2,m)
 invoke(c2,m,args);

Coordination

eval(room,null,newUser,{user})

invoke(newUser,{user})

Dynamic Composition Rules

Role aspect type method name aspect list

Room output newUser {coordination}

Role method name target comp

Room newUser JPEGAwarList
Room newUser CVEAwarList

RoomAwar
List

Figure 2: Component computation and coordination detachment

making highly reusable and adaptable components and as-
pects to avoid their development from scratch. Components-
aspects interaction information is usually hard-coded inside
components creating dependencies among them, which re-
duce their reusability. In order to avoid these dependencies
we put the AA, that is, components, aspects and weaving
information, inside the framework middleware layer.
The middleware layer is in charge of composing dynam-

ically components and aspects based on a set of dynamic
composition rules and the AA information. In the rest of
this section we present how components and aspects must
be developed in our DAOF and the mechanisms offered by
the middleware layer to define and store the AA used to per-
form the dynamic composition of components and aspects
at runtime. Figure 1 shows a UML class diagram with the
CTComponent, CTAspect and CTVESite (part of the mid-
dleware layer) stereotypes, the three main entities of our
model.

2.1 Application Architecture
The architecture of an application describes which com-

ponents set up the system and how they interact to accom-
plish the required functionality. Normally this architecture
is spread over the system because components have direct
references among them for their communication. With the
aim of decoupling components and aspects the information
about when and how to apply aspects to components it is
not hard coded, but it is explicitly set aside inside the AA.
In order to take out direct references from components and

aspects code we assign a unique and universal role name to
name them inside a particular context. Components and as-
pects with the same role are supposed to provide the same
behavior, so we are able to replace them by equivalent com-
ponents or aspects. Using the role concept we do not enforce
components and aspects to implement exactly an interface,
we only require them to offer a set of required methods. The
benefits of this approach is that a component or aspect role
can be provided by different interfaces and implementations,
letting developers configure an application customizing the
generic AA at design or adapting it dynamically at runtime.
The AA of a system is defined by the list of components

and aspects that can be instantiated in the system and a
set of Architectural Restrictions (ARs) which are explained
explained further on. Each component and aspect inside

the AA of a particular application configuration is defined
by a role name, an interface and an implementation class
name. Interfaces are detached from their implementation
classes, which may evolve independently at runtime. As-
pects are different from components in that the AA holds
several implementations, each one corresponding to a user
preference. Regarding the number of aspect instances that
must be created at runtime, framework users can choose one
of the following alternatives:

- environment-oriented. There is only one instance of an
aspect inside the system. An example can be the per-
sistence aspect in charge of registering all the logins
and logouts in the environment.

- user-oriented. Each user has his/her own instance of the
aspect, which is shared among all components collo-
cated at the user site. As an example, the framework
creates a unique instance of the multiple view aspect
for each user, according to his/her visual preferences
(2D or 3D representation, for instance).

- type-oriented. One instance of an aspect will be shared
by the set of components that play the same role. An
example is having different access control mechanisms
depending on the component type. For instance, the
access to documents is controlled by a LDAP Directory
Service while the access to rooms is decided asking
permission to the room owner.

- component-oriented. There is an aspect instance per com-
ponent instance. For example, different components
instances with the same role room could have differ-
ent access control, depending again on the room owner
preferences.

It is important to remark that this information is part of
the aspect description inside the AA, because the middle-
ware layer will create aspect instances according to this in-
formation. Completing the AA information, the ARs state
which aspects apply to each component, if they must be
applied before and/or after the execution of a component
method, dependencies among aspects and the application
order. An outstanding feature is that the number and type
of aspects that are applicable to a component can change
dynamically.

execute(CID4,dataroom,…) execute(CID2,viewroom,…)
Middleware Layer

Composition Component

dataroom
CID1

Coordination

sCID, tCID
Step1:

Step2: CID1,CID3

Step3: CID1,CID3
 CID2,CID4

dataroom
CID2

viewroom
CID3

viewroom
CID4

execute(CID1,viewroom,…) execute(CID3,dataroom,…)

Figure 3: Component matching using the coordination aspect

2.2 DAOF Components and Aspects
The aim of our proposal is to make the entities of the sys-

tem as independent as possible, to reduce their dependencies
and to increase their reusability across different applications.
However, components interact with other components, so
they need the receiving component address (reference) to
put it in an output message or method invocation. But
the use of the traditional message passing in object-oriented
programming, where a component maintains explicit refer-
ences to other components, is pernicious to achieve our goal
of independence. So, we realize that new message delivery
mechanisms are needed in open systems. Our framework
offers four kinds of message delivery mechanisms that avoid
the use of direct references among components: role-based
invocation, identifier-based invocation, instance-based invo-
cation and interface-based invocation.
The role-based invocation addresses a component by the

role name that the component plays in the system. For in-
stance in a CVE, components that model a place that users
join to collaborate have the role room. So, when a user re-
quests to enter into a room, a message with room as the
destination address is delivered. The identifier-based invo-
cation addresses a component by its unique identifier named
CID (Component IDentifier). Each component in the sys-
tem has its own CID. However, the CID of a component
can only be known if a message from that component has
been received before. Therefore, its use is restricted to this
case. On the other hand, the middleware layer assigns the
same identifier to those components representing a resource
that is replicated through different nodes. The instance-
based invocation is used when every instance must react to
the same events. This mechanism is very useful in CVEs.
For instance, all users connected to the same ”room” have
a local representation of that room, all sharing the same in-
stance identifier (e.g. demoRoom). Updates to a demoRoom
instance (e.g. the addition of a new document) are notified
to the rest of them by sending a message with demoRoom
as the target address. Finally, the interface-based invocation
addresses a component by its interface, which determines in
which interactions the component can be involved.
Using the above message delivery mechanisms we detach

the component that sends a message from the receiver com-

ponent. Likewise it is important to detach components from
aspects and aspects from other aspects. Components are not
aware of aspects since they have no knowledge about the
number and type of aspects they are affected by, and even
if they are affected by any aspect. This provides enough
flexibility to apply different aspects depending on the con-
text the component is being used. Even more important,
the aspects applied to a component can change dynamically
at runtime adapting the system to new requirements or user
preferences. In addition, there is no explicit joint points in
the aspect definition, as we said above they are defined in
the AA stored in the middleware layer. So, aspects are also
independent from the components they affect, being able to
apply them to different components in different times.
Finally, aspects do not have any information about the

rest of aspects applied at the same time to a component.
There could be dependencies in the order of application or
due to non-orthogonal aspects, but the aspects are not aware
of them. For instance, in a CVE the authentication aspect
must always be applied the first, but it does not have any
references to the following aspect. This aspect interconnec-
tion is specified in the AA and stored in the middleware
layer. In addition, if an aspect needs any information gener-
ated previously by other aspect it will get this information
from the middleware layer also. That is, aspects output
information is stored inside the middleware layer, ready to
be retrieved by any other aspect that needs it. So, in our
approach aspects never interact directly.
In order to facilitate the implementation of components

and aspects, the framework provides two basic classes, Com-
ponent and Aspect. DAOF components must extend the
Component class and DAOF aspects must extend the Aspect
class (figure 1). Since communication between components
is performed through the middleware layer, these classes
maintain a reference to the middleware layer, to interact
with other components and to create new components, sim-
plifying the developer task.
The Component class in Figure 1 has a reference to the

LocalEnvironmentSite component in the middleware layer
(see next section), and its most relevant methods are create-
Component, execute and broadcast. The createComponent
is used to create new components with a role name and an
instance name. The execute and broadcast methods are used

Close Open

enter()

leave()

login() login()

reject() accept()

 Figure 4: State Diagram Interaction Protocol for a

coordination aspect

for message delivery and will be explained in the next sec-
tion.
Likewise, the Aspect class in Figure 1 has a reference to the

LocalEnvironmentSite component of the middleware layer.
The main method in the Aspect interface is eval, that will
be invoked at runtime by the middleware layer to perform
the aspect evaluation.

2.3 Middleware Layer
The dynamic composition of components and aspects is

performed through the LocalEnvironmentSite component of
the middleware layer (figure 1). Each user is represented
inside the system by an instance of this component that
maintains a local copy of the AA. As we can see in Figure
1, the LocalEnvironmentSite is a composition of two main
classes, the LocalUserSite class and the EnvironmentCon-
nections class.
The LocalEnvironmentSite stores the AA with the ARs

that are common to all users. This general AA can be cus-
tomized for each user according to his or her user profile and
this information is stored inside the LocalUserSite class [10].
For instance, if different implementations of the same aspect
are available, the LocalEnvironmentSite has the list of all of
them while the LocalUserSite holds the concrete implemen-
tation that was chosen for a specific user.
The EnvironmentConnections class stores the AA. The in-

formation about components and aspects is maintained in
the ComponentInfo and AspectInfo classes respectively. For
each component the CompositionInfo class stores the list of
aspects applied to each method in that component and the
application order. We define two different kinds of rules:
input-aspects composition rules and output-aspects compo-
sition rules. In the former, aspects are applied before the
execution of the method, and in the latter aspects are ap-
plied after the execution of the method. The interpretation
of these rules is as follow: ”Aspects will be applied to a com-
ponent before or after the execution of the indicated method
and in the specified order”.
Regarding to component communication, when a compo-

nent sends a message, the middleware layer intercepts it and
evaluates the corresponding aspects. If the aspect evalua-
tion fails the middleware layer throws an exception to the
source component, otherwise the message is sent to the tar-
get component. In order to maintain again the independence
among components and aspects, components catch always a
general exception, so the aspect who elevates the exception
is unknown for the component.
Components send messages by invoking execute and broad-

cast methods of the middleware layer with four parame-
ters: the source component CID that identifies uniquely the
source of the message, the destination component, the mes-
sage name and its arguments. The destination component
can be indicated according to the already mentioned mech-

anisms for addressing target components, (they were role
name, CID, instance name or interface).

1. execute(sourceCID, targetComponent, message, args).
This method performs the delivering of messages to a
local component or a unique instance of a remote com-
ponent. If the destination component is local is sent
directly to it. In other case, it is propagated through
the middleware layer to other nodes, looking for a re-
mote component.

2. broadcast(sourceCID, targetcomponent, message, args).
This mechanism is used to broadcast the same message
to all the components addressed as target components.

3. SEPARATION OF THE COORDINATION
CONCERN

Components are computational entities that encapsulate
data and computation. However, components are not iso-
lated entities, they usually interact with each other to ac-
complish a certain task according to a coordination proto-
col. Coordination protocols usually crosscut all participant
components with the result of a high coupling between co-
ordination and computation code. The separation of data
processing from coordination patterns is proved to be a good
approach in component-based frameworks [4] and other ar-
eas like agent environments [5]. With this approach, com-
ponents are considered passive entities characterized by the
complete ignorance of how output messages influence the ap-
plication execution. Thus, components can be reused in dif-
ferent contexts and engaged in different interactions. Com-
ponent coordination protocols has been moved to another
entity, that in our system is the coordination aspect.
The coordination aspect is used in our framework to solve

component incompatibilities and integration problems. We
are going to illustrate different applications of the coordina-
tion aspect for the CVEs domain.
Usually open systems require that unknown components

can be added to a system at runtime. DAOF copes with the
difficulties of coordinating off-the-shelf components (COTS)
by providing communication primitives with no destination
address, like events. These are the execute and broadcast
methods where the target component parameter is set to
null. Now, output messages do not contain any information
about destiny, they are intercepted by a coordination aspect
that decides which component or components must finally
receive the event.
For instance, users that want to collaborate should be eas-

ily found inside a CVE. So, a CVE usually contains compo-
nents modelling awareness lists that show information about
user locations which are updated as users move inside the
environment. For example an awareness list may show all
users connected to the environment including their actual
work room or the connected users inside a room and their
actual state. Whenever a user logs into the environment or
moves between rooms, the information in both sort of lists
should be updated. However, the component (source com-
ponent) knowing that a user state has changed do not need
to be aware of the sort of components (target components)
that need to receive the new state for that user. The source
component sends the newUser event with the destiny ad-
dress set to null. Then, the coordination aspect intercepts
this event and notifies it to those components noted in the

 Room

Coordination

CollabTool, open(toolname) �
case toolname{
whiteboard � Whiteboard, initiate
chat � Chat, open
sharedApl � SharedAppl, initiate

}

CollabTool
- open(tool)

open(toolname)

Figure 5.a

Room

WhiteBoard
- initiate()

Chat
- open()

SharedAppl
- initiate()

open(toolname)

Figure 5.b

 Figure 5: Coordination aspect as an Adapter

aspect internal data. In figure 2, when the component room
use the execute primitive of the middleware layer it sets the
target component parameter to null. The composition rules
stored in the middleware layer states that the coordination
aspect is applied before the invocation of the newUser event
in the room component. The evaluation of the coordination
aspect determines that components with roles CVEAwarList
and RoomAwarList are listeners of the newUser event, so the
even is sent to these components.
Even in normal case, that is output messages containing

the destination address, there are situations where the co-
ordination aspect can be very useful. Though a component
can use the CID to uniquely address other component, the
CID is only known if a message from that component was
received previously, so it is not possible to use it in all situ-
ations. In addition, components reusability increases if the
system is designed having in mind the roles each component
plays in the interaction and not concrete instances. As we
already explained in section 2.3, this can be achieved using
the alternative invocation mechanisms offered by the mid-
dleware layer: role-based, instance-based or interface-based.
However, the inconvenience of using these mechanisms is
that more than one component can be candidate to receive
the message. Depending on the application logic, all of them
or only a subset of them should actually receive the message,
but components must not be aware of that. So, another
functionality of the coordination aspect is to solve this prob-
lem, by linking source and target components transparently.
For example, in the development of CVEs we detach the

component behavior from component view (component graph-
ical representation) implementing them in two separate com-
ponents. This means that a room is actually modelled with
two components: the dataroom and the viewroom compo-
nents. According to the component-aspect definition de-
scribed above, these components do not have explicit refer-
ences among them and do not know each other CIDs. Take a
CVEs with different rooms instantiated simultaneously for
a user, this means that there are different dataroom com-
ponents and different viewroom components and it is not
possible to differentiate them. When, for instance, a user
interacts with a viewroom and a message is sent to a data-

room, there is no way to know which dataroom component
must receive the message unless we use a coordination aspect
that matches pairs dataroom and viewroom components.
In figure 3 we have two dataroom and two viewroom com-

ponents, each one with its own CID. They interact with
each other using the execute primitive addressing the tar-
get component by its role. Initially (step 1 in figure 3)
the coordination aspect do not have any information about
the components. Lets suppose that the dataroom compo-
nent with CID1 creates the viewroom component with CID3.
The coordination aspect is applied before the creation of the
viewroom component and registers the pair CID1 and CID3
(step2 in figure 3). From now on, when the component data-
room with CID1 sends a message to a viewroom component,
the coordination aspect change transparently the invocation
mechanism from role-based to identifier-based sending the
message to the component with CID3. The same occurs for
the other pair of components (step3 in figure 3).
The interaction protocols implemented in the coordina-

tion aspect can be as simple as organize the communication
among a set of components. For instance, in a previous
example when a user enters in a room, the coordination as-
pect sends the newUser(user) message to all the components
whose interface implements this method. However, more
complicated interactions are possible. A coordination aspect
can encapsulate a state transition diagram as it is showed
in figure 4. Suppose a CVE where each user has his/her
own office and guest users can enter private rooms only if
the owner is there. In this case the coordination aspect has
two states, open and close. If the owner is absent the coor-
dination aspect is in the close state sending reject messages
to users that try to log into the room. Otherwise, the coor-
dination aspect is in the open state and it sends the accept
message when somebody knocks the door.
The coordination aspect also provides a solution to the

problems derived from the integration of COTS. It can play
the role of an adapter to compose components that initially
are incompatible due to differences in their interfaces. The
variations in the interfaces can be because of different mes-
sage names, arguments or types. In addition, the coordina-
tion aspect might hide the fact that the service used by a

source component is actually implemented with a combina-
tion of components and not with only one.
For instance, in figure 5.a a CVE application has a com-

ponent CollabTool that integrates all the collaborative tools
in the environment - whiteboard, chat and application shar-
ing. When the component room wants to open one of them
it sends the message open(toolname). Suppose now that
we want to develop a new application reusing the com-
ponent room, but where the collaborative tools are imple-
mented in independent components: WhiteBoard, Chat and
SharedAppl, as shown in 5.b. In this case, new components
offer different entry methods, so the coordination aspect is
needed as an adapter. The coordination aspect will replace
the name of the output message (open) with that offered
by new components, depending on the toolname parameter
value.

4. CONCLUSIONS AND FUTURE WORK
From our experience we consider AO Frameworks a better

approach than AO languages, specially for applications with
high customization requirements, due to the separation of
components and aspects in all the software lifecycle, and
the dynamic composition of them at runtime. Both features
impact on the flexibility, reusability and extensibility of the
resultant software.
In this paper we have presented the main characteristics

of our component-aspect model: 1) components and aspects
are first order entities that exist at runtime; 2) the model
detaches components and aspects interfaces from the final
implementation classes identifying them by role names; 3)
the AA is explicitly stated and stored in the platform; 4)
components and aspects implementation can be modified
at runtime without client code recompilation and without
changing the abstract definition of the software architecture;
5) components do not have direct references among them;
6) components have no knowledge about the aspects they
are affected by; 7) the number and type of aspects that are
applicable to a component might change dynamically.
As an example we have presented the coordination as-

pect, that provides separation of data processing from co-
ordination patterns. The coordination aspect encapsulates
interaction protocols of different complexity, detaches com-
ponents avoiding explicit references among them, and acts
as an adapter to solve the problems derived from COTS
integration.
Our future goals is to complete the implementation of

our DAOF framework and the definition of an application
framework for the development of CVEs. Concretely we
are developing a virtual office as part of a funded research
project.

5. REFERENCES
[1] S. Benford, C. Greenhalgh, T. Rodden, J. Pycock. To
what extend is cyberspace really a space?
collaborative virtual environments. Communications
of the ACM, 44(7), July 2001.

[2] A.W. Brown, K.C. Wallnau. The current state of
CBSE. IEEE Software, September/October 1999.

[3] C.A. Constantinides, A. Bader, T.H. Elrad,
M.E. Fayad and P. Netinant. Designing an
Aspect-Oriented Framework in an Object-Oriented
environment. ACM Computing Surveys, March 2000.

[4] L. Fuentes, J.M. Troya. Coordinating distributed
components on the web: an integrated development
environment. Software-Practice and Experience, 31,
2001.

[5] W.C. Jamison, D. Lea. Truce: Agent coordination
through concurrent interpretation of role-based
protocols. In Coordination’99, November 1999.

[6] G. Kiczales et al. Aspect-oriented programming. In
Proceedings of ECOOP’97. LNCS 1241.
Springer-Verlag, 1997.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, W.G. Griswold. An overview of AspectJ. In
ECOOP01, June 2001.

[8] C. Lopes, E. Hilsdale, J. Hugunin, M. Kersten,
G. Kiczales. Illustrations of crosscutting. In ECOOP
2000 Workshop on Aspects & Dimensions of
Concerns, June 11-12 2000.

[9] M. Pinto, M. Amor, L. Fuentes, J.M. Troya.
Collaborative virtual environment development: An
aspect-oriented approach. In Proceedings of DDMA
Workshop. In conjunction with the 21st International
Conference on Distributed Computing Systems
(ICDCS-21), April 2001.

[10] M. Pinto, M. Amor, L. Fuentes, J.M. Troya.
Heterogeneous users in collaborative virtual
environments using aop. In Proceedings of the
CoopIS’01 workshop, September 2001.

[11] M. Pinto, L. Fuentes, M.E. Fayad, J.M. Troya.
Towards an aspect-oriented framework in the design of
collaborative virtual environments. In Proceedings of
FTDCS’01 workshop, November 2001.

[12] R. Pawlack, L. Seinturier, L. Duchien, G. Florin. Jac:
A flexible and efficient framework for aop in java. In
Reflection’01, September 2001.

[13] H. Shinkuro, T. Tomioka, T. Ohsawa, K. Okada,
Y. Matsushita. A virtual office environment based on
a shared room realizing awareness space and
transmitting awareness information. In Proceedings of
the 10th annual ACM symposium on user interface
software and technology, 1997.

