
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

INGENIERÍA INFORMÁTICA

MODEL TO CODE TRANSFORMATIONS FOR

SOFTWARE PRODUCT LINES

Author:

Carlos Nebrera Cuevas

Supervised by:

Lidia Fuentes Fernández

Pablo Sánchez Barreiro

Departamento

Lenguajes y Ciencias de la Computación

UNIVERSIDAD DE MÁLAGA

MÁLAGA, June 2009

INGENIERÍA INFORMÁTICA

2

TRANSFORMACIONES DE MODELO A CÓDIGO PARA

LINEAS DE PRODUCTOS SOFTWARE

Realizado por

Carlos Nebrera Cuevas

Dirigido por

Lidia Fuentes Fernández

Pablo Sánchez Barreiro

Departamento

Lenguajes y Ciencias de la Computación

UNIVERSIDAD DE MÁLAGA

MÁLAGA, Junio de 2009

UNIVERSIDAD DE MÁLAGA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

INGENIERÍA INFOMÁTICA

Reunido el tribunal examinador en el día de la fecha, constituido por:

Presidente Dº/Dª.___

Secretario Dº/Dª. ___

Vocal Dº/Dª. __

para juzgar el proyecto Fin de Carrera titulado:

TRANSFORMACIONES DE MODELO A CÓDIGO PARA LINEAS DE PRODUCTOS SOFTWARE

del alumno Dº/Dª. Carlos Nebrera Cuevas

dirigido por Dº/Dª. Lidia Fuentes Fernández

 Pablo Sánchez Barreiro

ACORDÓ POR______________________ OTORGAR LA CALIFICACIÓN DE ________________________

Y PARA QUE CONSTE, SE EXTIENDE FIRMADA POR LOS COMPARECIENTES DEL TRIBUNAL, LA

PRESENTE DILIGENCIA.

El Presidente

El vocal El Secretario

Fdo: Fdo: Fdo:

Málaga, a de del 2009

 3

Table of Contents

List of Figures ... 5

List of Tables ... 6

Acronyms ... 7

CHAPTER 1: Introduction ... 9

1.1 Feature-Oriented Model-Driven Software Product Lines ... 9

1.2 The AMPLE project .. 12

1.3 Motivation and Scope of this work ... 13

1.4 Structure of the thesis .. 14

CHAPTER 2: Background .. 15

2.1 Software Product Line ... 15

2.2 Smart Home Case Study ... 18

2.3 Model-Driven Development ... 21

2.4 Feature-Oriented Programming ... 22

2.5 The CaesarJ Language .. 24

2.6 The openArchitectureWare Suite .. 28

CHAPTER 3: Variability Management with AOP and MDD Technologies 31

3.1 A Taxonomy of Variation in SPL ... 31

3.2 AOP/MDD Mechanism for Variability Management ... 35

3.3 Results of the evaluation ... 38

3.4 Conclusions ... 41

CHAPTER 4: Model-Driven Feature Oriented Software Product Lines:

The TENTE Approach ... 43

4.1 TENTE OVERVIEW .. 43

4.2 Domain Engineering ... 47

4.2.1 Architectural Design .. 47

4.2.2 Code Generation ... 53

4.2.2 Component Implementation ... 70

4.3 Application Engineering ... 71

4.3.1 Configuration of a Specific Architecture ... 71

4.3.2 Code Generation ... 74

4.4 Traceability information gathering .. 80

4

CHAPTER 5: Related Work ... 83

CHAPTER 6: Conclusions and Future Work ... 85

6.1 Discussion ... 85

6.2 Evaluation ... 90

6.3 Future work ... 92

References.. 95

APENDIX A. TENTE Plug-in User Manual .. 103

A.1 Install and Uninstall the TENTE Eclipse plug-in ... 103

A.2 Uninstallation ... 105

A.3 Updating ... 106

A.4 Generation of Code Skeletons .. 107

A.5 Code Generation of Specific Products ... 111

APPENDIX B. Smart Home User Manual ... 115

B.1 Generating and Executing .. 115

B.2 UI Description .. 117

B.3 Functionality ... 119

 5

List of Figures

Figure 2-1 Software Product Line Engineering process ... 16

Figure 2-2 Object-Oriented version of the Smart Home case study............................... 24
Figure 2-3 CaesarJ example for the Smart Home case study ... 26
Figure 2-4 oAW general architecture diagram ... 29
Figure 3-1 Code generation general schema .. 37
Figure 4-1 General overview of TENTE .. 44

Figure 4-2 Simplified SmartHome Cardinality based Feature Model 48
Figure 4-3 Simplified SmartHome Component View .. 48
Figure 4-4 Simplified SmartHome Composite Structure View...................................... 49

Figure 4-5 VML specification of the Smart Home case study 51
Figure 4-6 Two-level family classes schema ... 53
Figure 4-7 Package mapping, model example ... 57

Figure 4-8 HouseGateway architectural component .. 59

Figure 4-9 Code generated when transforming the HouseGateway component 60

Figure 4-10 Separation of implementation files for components 60

Figure 4-11 Floor inner class .. 61

Figure 4-12 Code generated when transforming the Floor inner class 62

Figure 4-13 INotify interface ... 63

Figure 4-14 Code generated when transforming the INotify interface 63

Figure 4-15 INotify interface declared in two different packages related by a merge.

 .. 64

Figure 4-16 Code generated when transforming the INotify interface of the

HeaterManagement package .. 64

Figure 4-17 HouseGateway component with two ports ... 66

Figure 4-18 Code generated when transforming the HouseGateway component with

two ports ... 67

Figure 4-19 Provides relationship between the services port and the INotify

interface .. 68

Figure 4-20 Code generated when transforming the provides relationship between the

services port and the INotify interface .. 68

Figure 4-21 Requires relationship between the request port and the INotify

interface .. 69

Figure 4-22 Code generated when transforming the requires relationship between the

request port and the INotify interface .. 70

Figure 4-23 Final product configuration .. 72

Figure 4-24 Package structure of the architectural model of a specific product. 73
Figure 4-25 Application model composite structure diagram .. 74
Figure 4-26 Code generated when transforming the leaf package of Figure 4-24 76
Figure 4-27 Generated initialization code for a specific product 77
Figure 4-28 Code generated when transforming the inner classes corresponding to the

configuration of Figure 4-25... 78
Figure 4-29 Code generated when transforming the attribute initialization corresponding

to the configuration of Figure 4-24... 78
Figure 4-30 Code generated when transforming the port connection corresponding to

the model of Figure 4-24 .. 79
Figure 4-31 Gathering traceability information with aspectual templates 81

6

List of Tables

Table 3-1 Variation in structure results .. 38

Table 3-2 Variation in data results ... 38
Table 3-3 Variation in behavior results .. 39
Table 3-4 Variation in quality results ... 39
Table 3-5 Variation in environment results .. 40
Table 3-6 Variation in technology results .. 40

Table 4-1 Correspondence between architectural elements in UML 2.0 and

implementation artifacts in CaesarJ (1) .. 55
Table 4-2 Correspondence between architectural elements in UML 2.0 and

implementation artifacts in CaesarJ (2) .. 56
Table 4-3 Code generated for the architectural model depicted in Figure 4-7 58
Table 4-4 Correspondence between architectural elements and implementation artifacts

at the application engineering level. ... 75

 7

Acronyms

AHEAD Algebraic Hierarchical Equations for Application Design

AMPLE Aspect-Oriented Model-Driven Product Line Engineering

AO Aspect-Oriented

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

ATF AMPLE Traceability Repository

CRM Customer Relationship Management

DSL Domain Specific Language

EMF Eclipse Modeling Framework

FMP Feature Modeling Plug-ins

FOP Feature Oriented Programming

GUI Graphical User Interface

JET Java Emitter Templates

J2EE Java 2 Enterprise Edition

MDD Model Driven Development

oAW openArchitectureWare

OO Object-Oriented

OOP Object-Oriented Programming

SQL Structured Query Language

SPL Software Product Line

UML Unified Modeling Language

VML Variability Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

8

 9

CHAPTER 1: Introduction

This Master Thesis presents TENTE, a Feature-Oriented Model-Driven process for

Software Product Lines, which has been developed in the context of the AMPLE

project. This chapter introduces the terms Feature-Oriented, Aspect-Oriented and

Model-Driven Software development as well as the concept of Software Product Line.

Then, we situate this work in the context of the AMPLE project and we present the

motivation and goals of this work.

1.1 Feature-Oriented Model-Driven Software Product

Lines

This Master Thesis combines technologies coming from different software

development paradigms. The pivotal element is variability management in Software

Product Lines. By means of applying Model-Driven and Feature-Oriented
1
 techniques,

we aim to improve the state-of-art of current Software Product Line practices. We

introduce each one of these terms in the following.

Software Product Lines

A Software Product Line (SPL) aims to create the infrastructure for the rapid

production of software systems for a specific market segment, where these software

systems are similar, and therefore they share a subset of common features, but they also

present some variations between them (Pohl et al, 2005, Clements and Northrop, 2002,

Kaköla and Dueñas, 2006, Laguna et al. 2007, Hallsteinsen et al, 2006).

The main goal in Software Product Line is to, as automatically as possible, to

construct specific products where a set of choices and decisions has been adopted on a

common model, known as family or reference model, which represents the whole

family of products that the Software Product Line covers. Software Product Line

1
 Feature-orientation is considered by several authors as a special form of aspect-orientation (Herrman,

2002; Mezini and Ostermman, 2004, Aracic et al, 2006; Gasiunas and Aracic, 2007). We will use feature-

orientation instead of aspect-orientation throughout this work.

CHAPTER 1: Introduction

10

Development is often comprised of two different, but related software development

processes, known as domain engineering and application engineering.

At the domain engineering level, we start from requirements documents that describe

a family of similar products for a specific market segment. Then, we design a reference

architecture and implementation for this family of products. This reference architecture

contains the elements that are common to all the products in the family, but it must also

contain mechanism for allowing the different variations introduced by the different

products belonging to the family.

At the application engineering level, we start from a requirement document for a

specific inside this family. This requirement document establishes with specific

variations must be included in this specific product. With this information, we introduce

these variations in the reference architecture and implementation, obtaining as a result a

single software product. Therefore, the main benefit of adopting a Software Product

Line approach is the reduction of time and development effort for developing specific

products belonging to a same family.

Software Product Line Engineering introduces new issues as compared to

engineering of single software-based systems: variability design and management, and

product derivation.

Variability design is concerned with the incorporation of variation mechanisms (e.g.

plug-in components, Aspect-Oriented enhancements) into the core assets that enable

the construction of a set of reusable software assets that represents the complete range

or family of products, including both their commonalities and their variations (Bayer et

al, 2006).

Product Derivation is the process of constructing specific software products, after a

specific configuration, i.e. a valid set of variants, has been selected, following the

directives for composing common and variable software assets (Deelstra et al, 2005).

Model-Driven Development

Model-Driven software development (MDD) (Beydeda et al. 2005, Pastor and

Molina, 2007) is a new technology for software development where models are first-

class citizens of the software development process, instead of simple mediums for

documentation purpose or inter-team artifacts. Using a Model-Driven approach, a

software product is obtained by successive refinement of models defined at different

CHAPTER 1: Introduction

 11

abstraction levels. These models can be automatically processed by tools, enabling part

of a model at a specific abstraction level to be automatically generated from the models

defined at higher abstraction levels. Thus, each property of a software system (e.g.

distributed communication) can be specified at the most suitable abstraction level for

that property and successively refined by means of automatic model transformation

until the implementation code is obtained (Beydeda et al. 2005, Pastor and Molina,

2007). The main benefit of Model-Driven techniques is the automation of repetitive

tasks, which leads to a reduction in the development effort and helps to increase quality.

In a Software Product Line, the composition of a product from a configurable set of

reusable software assets is a time consuming and cumbersome process. For instance, at

the code level, the instantiation of a specific product inside an SPL often implies writing

large configuration files and compilation scripts, with intricate dependencies between

them. In order to overcome this shortcoming, different attempts of applying model-

driven techniques to Software Product Line Engineering have emerged during recent

years (Haugen et al, 2005). They aim to automate repetitive, error-prone and time

consuming tasks of the SPL development process, such as the composition of reusable

software assets.

Feature-Oriented Software Development

A Software Product Lines is often decomposed into a set of interconnected features,

where a feature could be defined as “a unit of variation”. A feature represents a certain

aspect of a family of product that may be included, or not, in a certain product. Ideally,

features should be well-modularized in single software modules, facilitating their

composition, maintenance, independent development and evolution. Traditional

software development techniques, such as object-orientation (Meyer, 2001), often

contribute to achieve this goal. For instance, by using a strategy pattern (Gamma et al,

1995), we can encapsulate different features represented by different strategies in

separate subclasses, improving modularization and, as a consequence, maintenance and

evolution. Nevertheless, there are some features that cannot be well-encapsulated using

this kind of traditional techniques.

Feature-Oriented software development aims to improve separation of concerns by

means of providing new encapsulation units, such as family classes, and new

composition mechanisms, such as mixin composition, that allows the encapsulation of

CHAPTER 1: Introduction

12

features of a Software Product Lines in single software modules, easing variability

management and feature modularization.

As already commented, TENTE is part of a bigger picture, which is the AMPLE

project. Motivation and challenges of this project are described in the next section.

1.2 The AMPLE project

The AMPLE project is a research project funded by the European Commission inside

the 6
th

 Framework Programme. It is integrated by eight partners, which are divided in

five universities (University of Lancaster, Universidade Nova de Lisboa, Technische

Universităt Darmstad, Ecole des Mines de Nantes, University of Twente and

Universidad de Málaga) plus 3 industrial partners (Siemens AG, SAP AG and Holos) .

Current industrial practice in SPL engineering are based on manual processes, which

often rely in programming tricks such as conditional compilation and preprocessors,

which are inadequate substitute for proper programming language support for

variability. Similarly, there is no a systematic management of traceability information

for relating variable software artifacts across a SPL engineering lifecycle.

The aim of AMPLE is to provide a Software Product Line (SPL) development

methodology, from requirements until implementation, that offers improved

modularization of variations, their holistic treatment across the software lifecycle and

maintenance of their (forward and backward) traceability during SPL evolution. For

achieving this goal, novel Aspect-Oriented and Model-Driven techniques are applied

from early requirements engineering until implementation.

Aspect-Oriented Software Development (AOSD) can improve the way in which

software is modularized, localizing its variability in independent aspects as well as

improving the definition of complex configuration logic to customize SPLs. Model-

Driven Development (MDD) can help to express concerns as a set of models without

technical details and support traceability of the high-level requirements and variations

through model transformations.

Next section describes motivation and scope of TENTE, which has become the

backbone of the AMPLE project.

CHAPTER 1: Introduction

 13

1.3 Motivation and Scope of this work

This master thesis presents TENTE (AMPLE D2.4, 2008), a Feature-Oriented Model

Driven process for Software Product Lines. TENTE covers the architecture design and

implementation software development stages, both at the domain and the application

engineering levels.

TENTE uses advanced techniques for the separation of concerns, such as family-

classes plus mixin composition (Herrman, 2002; Mezini and Ostermman, 2004, Aracic

et al, 2006; Gasiunas and Aracic, 2007), both at the architectural design and the

implementation level. This contributes to improve feature modularization, which eases

variability management as well as feature maintenance and evolution. Separation of

variants is maintained both at the architecture and implementation levels, so benefits of

such a separation are maintained through this part of the software development

lifecycle.

TENTE uses Model-Driven techniques, such as code generation, to automate

repetitive tasks of Software Product Line engineering, especially for the derivation of

specific products. Complete implementations of specific products can be automatically

obtained by simply providing a selection of features to be included in a product and

running a code generator.

TENTE uses UML 2.0 (UML 2.0) as language for modeling software architectures

and CaesarJ (Aracic et al, 2006), a Feature-Oriented programming language as

implementation language. Code generators have been implemented in xPand, the

model-to-text transformation language of the openArchitectureWare Model-Driven

suite.

TENTE has been integrated with Aspect-Oriented requirements engineering

techniques for Software Product Lines developed in the context of the AMPLE project,

such as Arborcraft (Noopen et al, 2009) or VML4RE (Alférez et al, 2008). TENTE also

uses tools developed in the context of the AMPLE projects, such as VML4Arch

(Loughran et al, 2008, Sánchez et al, 2008), a language for variability management in

architectural models or ATF, a traceability framework (Anquetil et al, 2009).

Nevertheless, the description of these techniques and tools is beyond the scope of this

work.

CHAPTER 1: Introduction

14

In order to evaluate TENTE and its associated code generators, it has been applied to

two industrial case studies used in the context of the AMPLE project. The first case

study is Smart Home Software Product Line, provided by Siemens AG. This case study

has been completely redeveloped following the TENTE approach, extracting positive

results. Three different products, i.e. three different automatic houses, were

automatically generated from the domain engineering infrastructure and successfully

tested. The second case study is a kind of Customer Relationship Management (CRM)

application for assisting sales processes provided by SAP AG. For this case study, a

reference architecture have been created as well as different specific products. The goal

of applying TENTE to this case study was to evaluate the expressiveness of the

approach, and to demonstrate that TENTE can be applied to Software Product Lines

different from the Smart Home. Throughout this thesis, the SmartHome case study

would be used as an example to illustrate the different concepts and ideas.

1.4 Structure of the thesis

After this introduction, this thesis is structured as follows: Chapter 2 comments on

concepts and tools that have been used during the development of this thesis. It also

gives a brief description of the case study used to evaluate TENTE. Chapter 3 is an

evaluation of the main AOP and MDD variability management for Software Product

Line engineering. Chapter 4 explains the TENTE approach, a Feature-Oriented Model-

Driven process for variability management in Software Product Line engineering.

Chapter 5 comments on related work. Finally, Chapter 6 contains some conclusions and

feature work.

The first appendix explains how to install the TENTE tool and a practical example

about how to use it. The second appendix describes the Smart Home case study

implementation, which was developed for evaluating TENTE.

 15

CHAPTER 2: Background

This chapter provides some background on the techniques, technologies and tools used

by the TENTE approach. The chapter starts introducing Software Product Line

Development. Then, we describe the Smart Home case study, a traditional exemplar of

Software Product Line Engineering. Next, we explain the novels Model-Driven

Development and Feature-Oriented Programming. Then, we provide an overview of the

CaesarJ language, a specific language supporting Feature-Oriented programming

through family polymorphism plus mixin composition.

CaesarJ is the implementation language selected for TENTE, all the model to code

transformations has CaesarJ as target language. CaesarJ is a Feature-Oriented Language

based in Java that allows us to simplify the transformation process by transforming

model features directly in family classes. Finally sections 2.5 and 2.5 describe the Smart

Home and Sales Scenario use cases that has been developed to test the SPL

development process.

2.1 Software Product Line

A Software Product Line (SPL) aims to create the infrastructure for the rapid

production of software systems for a specific market segment, where these software

systems are similar, and therefore they share a subset of common features, but they also

present some variations between them (Pohl et al, 2005, Clements and Northrop, 2002,

Kaköla and Dueñas, 2006, Laguna et al. 2007, Hallsteinsen et al, 2006). The main goal

of a Software Product Line is to decrease development time and cost and increase

quality of the products derived from the product line asset base. A product is one

concrete variant of all possible base asset configurations.

CHAPTER 2: Background

16

Figure 2-1 Software Product Line Engineering process

Software Product Line Engineering is comprised of two phases: Domain Engineering

and Application Engineering (see Figure 2-1). Domain Engineering deals with the

creation of the infrastructure or Product-Line Architecture, which will enable the rapid,

or even automatic, construction of specific software systems within the family of

products a SPL covers. Application Engineering is concerned with the engineering of

specific products or single software systems using the infrastructure previously created

at the Domain Engineering level (Fuentes et al, 2009). The different elements of this

process, labeled in the figure, are described below:

1. First of all, variability of the family of products to be developed is analyzed and

specified using a feature model (Czarnecki et al, 2005). The feature model

specifies the different kinds of variations that can exist between different

specific products that can be derived from the SPL. The feature model for SPL

plus the constraints between features (i.e. dependencies and interactions between

features) represent the „variability specification‟, or, using SPL terminology, the

problem space.

2. Once variability of a family of products has been identified, engineers must

develop a system that supports this variability, i.e. software engineers and

architects must design a flexible architecture that enables its customization,

Domain Engineering

CreditCard

<< component >>

Variability specification

CreditCard

<< component >>

CreditCard

<< component >>

CreditCard

<< component >>

CreditCard

<< component >>

CreditCard

<< component >>

LightController

<< component >>

Variability realisationLinking specification

and realisation

if (LightMng == SELECTED) then

 {bind(kernel,LightController);

 ...}

else

 {kernel.light = false)}

endif

...

Application Engineering

requires

LightController

<< component >>

Kernel

<< component >>

Dimmer

<< component >>

Middleware configuration Automatic derivation of a specific product

1

2 3

4

5

CHAPTER 2: Background

 17

including and excluding functionality and components as required. Different

mechanisms are available for this purpose, from low-level mechanisms such as

conditional compilation, parameterization or generics; to more high-level

mechanisms, such as model transformations. As a result of this process, a

reference architecture and a reference implementation are obtained. This step

represents „variability realization‟, or, using SPL terminology, the solution

space. This reference implementation contains all the components that are

required for implementing any product within the SPL family. The only

remaining task for obtaining a specific product from this reference architecture

and implementation is to appropriately instantiate and connect these components

according to the features that must be included in the specific product.

3. The connection between a feature model and a reference architecture is rarely a

trivial one-to-one mapping. For instance, the inclusion of the feature Smart

Heating Management, of the SmartHome case study (see section 2.2), will

influence the HouseGateway, Heater and Windows components, since several

operations need to be overridden. Moreover, GUIs are also affected, since we

need to add new panels and buttons. Different SPL tools and languages, such as

pure::variants (Beuche, 2003), Gears (Krueger, 2007), VML (Loughran et al,

2008) or fmp2rsm (Czarnecki et al, 2005b), support the definition of mappings

between a feature model and a reference architecture/implementation, often

called family model. This mapping usually specifies which actions must be

performed when a certain feature is selected. These actions range from

generating a certain part of the code of a component to the setting of certain

parameters or inclusion/exclusion of certain components from a compilation

unit. For instance, in the SmartHome case study (section 2-2), if the Light

Management feature is selected, the HouseGateway controller needs to be

redefined, adding the ports and interfaces required for connecting the

components related to light management, such as LightControllers or Dimmers.

This kind of rule represents the mapping between problem space and solution

space, and is the basis for the automatic derivation of specific products at the

application engineering level, as is explained in the next two points. Once the

domain engineering infrastructure or SPL infrastructure has been created,

specific products, i.e. a Smart Home with a specific number of rooms and floors

and a specific selection of facilities, can be automatically derived. The first step

CHAPTER 2: Background

18

in this process is the creation of a well-formed configuration, i.e. a configuration

that satisfies the constraints specified by the feature model. For instance, in the

SmartHome case study, a constraint is that if Smart Energy Management is

selected, we must also select the Window Management and Heater Management

features, such as both are required by the Smart Energy Management. This

configuration specifies which features must be included in the specific product

being engineered. Different techniques can be used for creating configurations,

such as using a simple feature modeling tool, e.g. fmp (Czarnecki et al, 2005b),

dedicated wizards or even Domain-Specific Languages (DSLs) (Santos et al,

2008).

4. Finally, using the configuration created in the previous step, and the mapping

created in Step 3, SPL tools, such as pure::variants or VML, are able to

automatically generate the specific product that corresponds to the desired

configuration. This is achieved by interpreting and executing the rules that

specify the mapping between the feature model and the reference architecture.

As a result of executing these rules, the components that will comprise the

specific product, plus their appropriate instantiation, initialization, configuration

and compilation files are automatically obtained.

2.2 Smart Home Case Study

The reason for dealing with home automation systems was to get insight into a

domain in which the application of Software Product Line Engineering might bring

important benefits.

Most everyday-life technical devices can be controlled by microprocessors. Home

automation integrates such devices into a network. The network allows the coordination

of the functions provided by different subsystems in order to fulfill complex tasks

without human intervention.

The home automation domain tackles as major goals: comfort, security and cost

saving. Comfort is increased by automating tedious tasks and by an intuitive and well-

designed user interface. Security is addressed by identification mechanisms and

surveillance equipment like outdoor cameras. Notification mechanisms additionally

CHAPTER 2: Background

 19

contribute to security by allowing for immediate reaction. A similar reasoning holds for

life safety. Low costs helps to reduce running costs by smart energy management.

The user must be able to access all devices via a common user interface such as a

touch screen. In addition, the residents can use Internet applications and mobile

computers to control their home from any place.

Building Blocks of a Home Automation System

Sensors and actuators are mechanical or electronic components that measure and

respectively influence physical values of their environment. Smart control devices read

data from sensors, process this data, and activate actuators, if necessary. For many

control and automation tasks a smart control device can act autonomously.

The home gateway is the central server of a smart home. It offers the processing and

data storage capabilities required for complex applications. Users such as residents or

technicians can access the services offered by the home gateway via different front-ends

that interact with the home gateway and provide a user interface.

User management is a necessary component of the home gateway software. Each

individual user has different access rights and different preferences with regard to the

system functions. This kind of information is stored in the database of the home

gateway and can be accessed by other devices such as electronic door locks.

To avoid additional cabling, power-line communication or wireless communication

can be used. A realistic home automation system is inclined to employ a heterogeneous

network made up of various network standards and various communication media.

The devices connected to the home network can also differ greatly with respect to

their functionality and their software and hardware. As a consequence, the software

architecture of a smart home must be able to cope with all kinds of networks and

technical devices.

A specific Smart Home Product Line

In this document, we will focus on the development of a Smart Home Software

Product Line, with a variable number of floors and rooms (note: the number of rooms

per floor is also variable) that offers the following services, categorized in basic and

complex facilities:

CHAPTER 2: Background

20

Basic Facilities

(1) Light management: Inhabitants must be able to switch on, switch off and adjust

the intensity of the different lights placed in a room. The number of lights per room

is variable. The adjustment should be performed specifying an intensity value.

Lights can be controlled individually, at room level, floor level or at full house level.

(2) Window management: Inhabitants have to able to have windows managed,

specifying the percentage aperture for each window. In addition, if the window

would have blinds, these should be rolled up and down automatically. Like for light

management, windows and blinds can be controlled individually, at room, floor and

full house level.

(3) Heater Management: Inhabitants must be able to adjust the heaters of the

house to their preferred value. Heater power is automatically adjusted according

with the selected temperature. It is possible to select temperatures for the individual

heaters, rooms, all rooms in a floor or the whole house. Each room can contain

several heaters and their own thermometer so we can have different climate zones in

the same room.

Complex facilities

(1) Smart Heating Management: The heating control will adjust itself

automatically in order to save energy. Once the internal temperature is selected, the

house will check the external temperature in the room. If the desired temperature can be

acquired by opening the windows, they will be opened and heaters will be switched off.

The Smart Heating Manager will control the temperature changes to adjust windows

aperture and heaters power in order to save energy. In case there is more than one

heater, the average selected temperature will be use as reference for the Smart Heating

Manager.

The complex facilities are optional. Each customer can select the number of facilities

he or she desires, although she or he must place devices and facilities at least in three

rooms. Otherwise the setting up of the Smart Home will not be cost-effective.

CHAPTER 2: Background

 21

A Specific Smart Home

In order to show how the configuration process works, a specific Smart Home will be

derived. It will have two floors (first and second floor) and two equipped rooms per

floor All the rooms have Window Management, Light Management and Heating

Management. These features can be controlled individually, at room, floor or full house

level. Smart Energy Management has been also selected by the user in order to save

energy. It could be activated individually for each room or for the full house. All this

functions will be controlled through a GUI installed in the House Gateway of the

SmartHome.

2.3 Model-Driven Development

Model-Driven Engineering (MDD) (Beydeda et al, 2005, Pastor and Molina, 2007) is

a new technology for Software Development where models are no longer simple

mediums for describing software systems or facilitating inter team communication.

Models are now first citizens of the software development process, and even the code is

managed as a model. Using Model-Driven Development, a software system is obtained

through the definition of different models at different abstraction layers. Models of a

certain abstraction layer are derived from models of the upper abstraction layer, by

means of model transformations.

A model transformation specifies how an output model is constructed based on the

elements of an input model. Model transformations languages aim to automate the

process of deriving one model from another one. Thus, when the mapping between two

different kinds of models is known, e.g. the mapping between an entity-relationship

database model and a relational database model, model transformations can provide the

following benefits:

 Repetitive, laborious and error-prone tasks, required to create a model from

another model are avoided, as transformations are executed by a computer.

 Best practices can be encapsulated in model transformations, ensuring target

model quality.

 Knowledge encapsulated in a transformation can be easily reused, as software

developers applying the model transformations do not need to know the details about

how the mapping is performed. For example, a database architect can construct an

CHAPTER 2: Background

22

entity-relationship model and then apply a transformation in order to produce a

relational model without knowing how the transformation is exactly performed.

 Changes can be easily managed, as they can be done at the corresponding

abstraction layer and propagated quickly to lower abstraction levels by model

transformation. For example, adopting a replication and load balance strategy in a

system can be considered an architectural change. The architectural model in the

Model-Driven process would be updated and then the change propagated to design,

implementation and deployment models.

 When several transformations, from a source model to different kinds of target

models are available, the same source model is reused to generate different systems.

For instance, if transformations from relational models to SQL and XML models are

available, the same relational model can reused to generate different implementation

of the same database.

2.4 Feature-Oriented Programming

Feature-Oriented Programming (FOP) (Prehofer, 2001) is a new software

methodology which holds that the best way to remove redundancy and improving

efficiency, is to create a large number of minor features, which are then linked together

in the functions/methods/procedures (from this point on referred to as functions) which

takes care of the core functionality. In terms of abstraction, Feature-Oriented

Programming primarily focuses on the features of a system, instead of the objects that

comprise it (as one would do in an Object-Oriented language).

Feature–Oriented programming can be seen as a modular methodology, which

promotes small, tightly focused, but still general purpose, functions, at the expense of

large, specific, functions. Most functions should be seen as a single specific tool to

complete a single general task (such as a tool in a Swish army knife), while the program

itself should have a clear specific purpose. One task that could easily be envisioned

would be a sorting function, which relies on a predicate/comparator to know how to

sort, since it is so universally useful. Along the same lines one would find that most

mathematical functions today are integrated directly into many programming languages'

library's (because they are used so often).

CHAPTER 2: Background

 23

The proponents of Feature-Oriented Programming hold that it would create greater

consistency in programming, since the programs would only depend on code being

written once, and then referred to (though the code might contain features to change it

behavior under certain conditions). Another benefit is that most functions would be

placed centrally, which would mean, unlike Object-Oriented Programming which

spread their features across several objects – even though the chain of program calls

would always be the same, the functions would be readily available to most of the code.

A feature is a prominent or salient part of an object or thing. Everyday objects like

cars, houses, or dogs are distinguished among similar objects by the set of features they

exhibit such as color, size, or breed. A similar scenario can be applied to programs

where features correspond to the functionality that programs provide. For instance,

consider a word processor program with typical features of file loading and saving,

editing options, spelling checker, font formatting, printing options, and so on.

Abstracting programs in terms of features facilitates their understanding. More

importantly, it opens the possibility to think about constructing programs that provide

different combinations of features. The set of such programs is called a Software

Product Line, and the members are thus distinguished by the combinations of features

they support.

To carry along with the implementation of product lines, the next step is

modularizing features so that we could use them to assemble particular products.

Unfortunately, conventional modularization approaches like functions, classes or

packages are not appropriate for feature modules. A typical feature implementation

spreads over several module (class, package) boundaries. Furthermore, a single module

(class, package) may contain intertwined fragments from multiple features.

Programmers must lower their abstractions from features to those provided by the

underlying programming languages, a process that is far from simple let alone amenable

to significant automation. Hence the gap between feature abstractions and their

modularization severely hinders product line development. The problem is that feature

modularity is not well understood and is not well supported in conventional

programming languages.

Next section describes CaesarJ, a language that supports Feature-Oriented

programming through family polymorphism plus mixin composition and which has

been used as target language of the TENTE approach.

CHAPTER 2: Background

24

2.5 The CaesarJ Language

CaesarJ (Aracic et al, 2006) is a language developed by the Technical University of

Darmstadt, which unifies aspects, classes and packages in a single powerful construct,

called family class, which helps to solve a set of different problems of both Aspect-

Oriented and Component-Oriented programming. CaesarJ integrates Aspect-Oriented

constructs for join-point interception with advanced modularization techniques, like

virtual classes and propagating mixin composition, enabling the development of large-

scale aspectual components. Moreover, CaesarJ supports Feature-Oriented

Programming (Prehofer, 2001), by means of virtual classes and mixin composition

(Gasiunas and Aracic, 2007).

Figure 2-2 Object-Oriented version of the Smart Home case study.

In Object-Oriented Programming, dependencies between classes are not isolated in

bigger entities as family classes. If new functionality is added to an existing set of

classes, it is usually done by means of inheriting and extending the existing classes.

This is illustrated in Figure 2-2 for the Smart Home case study. In this version, for

instance, a new child class named HouseGatewaySmartEnergyControl extends the

HouseGateway class in order to add the methods required by the SmartEnergyControl

Class Diagram OO Example[]

HouseGatewaySmartEnergyControll

+setEnergyMode(mode : String)

GUIWindowManagement

+windowGUIs : WindowGUI [0..*]

+openWindow(Id : String)

+closeWindow(IId : String)

+initWindows()

GUIHeaterManagement

+heaterGUIs : HeaterGUI [0..*]

+switchHeaterOff(Id : String)

+initHeaters()

+switchHeaterOn(Id : String)

GUI

+showGUI() : void

+initGUI() : void

+setTittle(value : String) : void

GUISmartEnergyControl

+startEnergySaver()

+changeEnergyMode()

+stopEnergySaver()

HouseGateway

+devices : Device [0..*]

+GUIs : GUI [0..*]

+getDevices()

+getGUIs()

WindowController

+aperture : Integer

HeaterController

+power : Integer

+state : String

Thermometer

+inTemp : float

+outTemp : float

Device

+id : String

+type : String

WindowGUI

+windowId

HeaterGUI

+heaterId

CHAPTER 2: Background

 25

feature. A new GUISmartEnergyControl class extends the classes that represent the

GUIs for Window and Heater Management. The main problem of this technique is that

inheritance is used at class level. Therefore, an increment in functionality represented by

a set of new child classes that extend a set of parent classes cannot be managed

consistently as an encapsulated unit.

The first problem of this lack of encapsulation is an increase in the complexity for

managing the selection of features. Even if the classes belonging to a same feature are

separated in packages, it is necessary to select the concrete classes that are going to be

used in a specific product. For instance in order to have window management in the

specific product, we have to select the GUIWindowManagement and WindowController

concrete classes. Since normal inheritance is used, each class has a different name and

therefore the references to those concrete classes must also to be updated. The bigger

the number of features of a family of products is, the more complex the relationships

between concrete classes become, resulting unmanageable for medium-size Software

Product Lines. If multiple inheritance is not allowed, which is the case of popular

languages such as Java, the problem becomes even more complex, since it is not trivial

to extend several class at the same time. For instance, a class like

GUISmartEnergyControl would not be allowed. We would need to create two concrete

classes, one inheriting from GUIWindowManagement and other from

GUIHeaterManagement, and combine both classes in another one that contains them.

This increases the complexity of the relationships and references between classes.

In order to overcome these problems, the CaesarJ improves the OOP type system, by

encapsulating dependencies between classes in family classes, transforming the OO

classes in virtual classes, and introducing the mixin composition mechanism. Figure 2-3

shows an implementation of the SmartHome case study using CaesarJ. We will use this

figure to illustrate the examples.

CHAPTER 2: Background

26

Figure 2-3 CaesarJ example for the Smart Home case study

Virtual classes are inner classes that can be refined in the subclasses of the enclosing

class. We will call an enclosing class family class, because they define families of

objects that are instances of the virtual classes a family class contains. According to the

FOP approach, features are modeled as family classes; therefore we can consider that a

family class is most likely a feature. For instance, in Figure 2-3, HouseGateway is an

inner virtual class of the InitialModel family class. This inner virtual class is then

refined in the WindowManagement, HeaterManagement and SmartEnergyControl

virtual classes. A refinement of a virtual class, also known as a further binding,

implicitly inherits from the class it refines. For instance, in Figure 2-3, the

HouseGateway class in the WindowManagement family class implicitly inherits from the

HouseGateway class of the InitialModel family class. In a refinement, we can add

new methods, fields and inheritance relationships as well as override the inherited

Class Diagram CaesarJExample[]

SmartEnergyControl

InitialModel

WindowManagement HeaterManagement

GUI

+windowGUIs : WindowGUI [0..*]

+openWindow(Id : String)

+closeWindow(IId : String)

+initWindows()

HouseGateway

+setEnergyMode(mode : String)

GUI

+heaterGUIs : HeaterGUI [0..*]

+switchHeaterOn(Id : String)

+switchHeaterOff(Id : String)

+initHeaters()

GUI

+showGUI() : void

+initGUI() : void

+setTittle(value : String) : void

HouseGateway

+devices : Device [0..*]

+GUIs : GUI [0..*]

+getDevices()

+getGUIs()

GUI

+startEnergySaver()

+changeEnergyMode()

+stopEnergySaver()

WindowController HeaterController

WindowController

+aperture : Integer

Thermometer

HeaterController

+power : Integer

+state : String

HouseGatewayHouseGateway

Thermometer

+inTemp : float

+outTemp : float

Device

+id : String

+type : String

WindowGUI

WindowGUI

+windowId

HeaterGUI

HeaterGUI

+heaterId

Device

Device

Device

CHAPTER 2: Background

 27

methods. In each family class all references to a virtual class are always bound to its

most specific refinement. For instance, in Figure 2-3, all references in the

SmartEnergyControl family class to a HouseGateway class refer to the HouseGateway

class refinement of that SmartEnergyControl family class. Since family classes can

contain a set of classes, they can be used instead of packages. In this way we can enjoy

the benefits of inheritance, interfaces and polymorphism at the scale of sets of classes.

These features are useful for implementation of large scale extensible components.

Mixin composition is a form of multiple inheritance, which is based on linearization

of the inheritance graph. Inheritance linearization (Ernst, 1999) is a common

mechanism to reduce a multiple inheritance graph to an ordered list, so that the order of

the elements in the list determines the behavior in a case of ambiguity. The linearization

defines the overriding order of inherited methods.

CaesarJ implements a propagating mixin composition, which means that the

composition propagates into virtual classes: all inherited declarations of virtual classes

with the same name are composed by mixin composition. Since virtual classes may also

have super classes, these are composed with mixin composition as well. For instance, in

Figure 2-3, the SmartEnergyControl family class inherits from HeaterManagement

and WindowsManagement at the same time. In order to avoid conflicts due to multiple

inheritance, mixin composition is applied to these inheritance relationships. The

propagating mixin composition provides a large-scale multiple inheritance that allows

to compose independent extensions of large scale components.

 The main benefit of the family class encapsulation appears when we want to evolve

an existing set of classes, adding new functionality over them. Each family class, such

as WindowManagement, contains a set of classes that implements a new feature by

means of extending a set of existing classes. These extensions do not require

modifications of the classes being extended and names are preserved. For instance, the

WindowManagement family class adds new functionality to the classes of the

InitialModel family class. More specifically, a new class WindowGUI is created and

the GUI class is extended and associated with WindowsGUI. It should be noticed the GUI

class maintains the same name.

Since classes are grouped by features, it is possible to instantiate a product just

instantiating family classes. Moreover, a main benefit of CaesarJ is that since class

names are not modified in each refinement performed by a family class, all references to

CHAPTER 2: Background

28

a class are automatically re-bound to the refined class. For instance, the HouseGateway

class in the WindowManagement class will refer to the extended version of the GUI class,

containing the new methods (e.g. openwindows(id:String)) added in the

WindowManagement refinement, instead of the original GUI class defined in the

InitialModel family class. This reference updating is automatically ensured by the

CaesarJ type system and eliminates the burden of having to select between different

concrete versions of a class, according to the features selected. Finally, multiple

inheritance is allowed at family class level. Therefore, new features that made use of

more than one of the previous features, like SmartEnergyControl can redefine

common classes like GUI without conflicts.

Hence, CaesarJ seems to be a suitable language to implement Software Product

Lines, since CaesarJ, as compared to other programming languages facilitates that:

• Coarse-grained reusable assets, or architectural increments, can be encapsulated

into family classes, enabling the separation of these reusable assets at the code level. For

instance, coarse-grained features such as LightManagement can be well-encapsulated

into a single family class.

• Propagating mixin composition allows a feature can extend several features, i.e.

a feature can refine several features at the same time.

Virtual classes were originally introduced in BETA (Madsen and Mollen, 1989) and

were further developed in gbeta (Ernest, 1999), which supplemented them with mixin

composition and family polymorphism. CaesarJ provides a solid implementation of

these concepts on the Java Virtual Machine and combines them with language features

for crosscutting composition, such as pointcuts and advices.

2.6 The openArchitectureWare Suite

openArchitectureWare (oAW) is a suite of tools and languages for Model-Driven

development. This section will briefly explain the different parts of oAW. Since the

oAW offers a wide range of languages and features, we focus on this section on those

parts of the oAW suite that have been explicitly used for the development of TENTE.

Figure 2-4 shows the components of by the TENTE approach and their

interrelationships. This Figure is explained below.

CHAPTER 2: Background

 29

Metamodel

(Ecore)

Model

(Ecore)
Model to Text

(xPand)

Model to Model

(xTend)

Workflow

Java

Extension

Model

(Ecore)

Generated

Text

Aspectual

Templates

Aspects

Figure 2-4 oAW general architecture diagram

The first step of a MDD process using oAW is to define a metamodel for the models

we are going to deal with. The metamodel has to be specified in Ecore, the

metamodelling language of the Eclipse Modeling Framework (EMF) (Budinsky et al,

2003). Once the metamodel has been specified defined, we can construct models that

conform to this metamodel. EMF provides certain mechanism for defining models

conforming to an Ecore metamodel, although they are really basic mechanism, which

are not really appropriated for constructing large-scale models.

A better option is to reuse a previously existing metamodel, such as UML (UML,

2005). This has been the one followed in this thesis. This allows us to use third-party

tools for model construction, and avoids the need of defining a new metamodel from

scratch. oAW provides an adaptor for the UML metamodel, which also supports the use

of UML Profiles.

Once we have defined a model, we can use the different languages provided by the

oAW suite for manipulating this model in several ways. More specifically, we can use

model-to model (M2M) and model-to-text (M2T) transformations.

Model-to-model transformations (Figure 2-4, left side) accept a model as output and

generate a target model as output. The input model is transformed according to a set of

rules defined in a model transformation language. The model-to-model transformation

language of the oAw suite is called xTend. This language provides a set of predefined

functions for manipulating model. These functions can be extended with new functions,

which can be expressed as in the own xTend language and also in Java, in case this were

CHAPTER 2: Background

30

required (this option is useful for manipulating complex data structures that requires

some optimization or for interacting with third-party tools).

Model-to-text transformations (Figure 2-4, right side) accept a model as output and

generate text as output. This text is normally code for a specific programming language,

or any other implementation-related artifact, such as configuration or deployment files.

A model-to-text transformation generates one or several text files from a source model,

following the transformation rules specified often in a template-based languages, which

specifies how text must be produced according to the elements and the values of these

elements in the source model. The model-to-text transformation language of the oAW

suite is the xPand language.

The xPand language supports the definition of aspectual model-to-text

transformations. An aspectual model-to-text transformations is a special kind of

template which, following the pointcut plus advice mechanism of aspect-orientation

(Kiczales et al, 1997). The aspectual template captures the execution of an xPand rule in

a Model-to-Text transformation and generates the desired code. The aspectual template

can generates code in the same file as the original template, or in a different one. This

allows modifying the code generation without modifying the original templates. The

aspectual templates to be applied in a transformation are defined in the workflow of the

transformation.

In oAW, we can construct chains of model transformations, where the output of a

model transformation is used as input for the following. These chains of model

transformations are defined through a special kind of scripts, which are called in oAW

workflows. A workflow, which is specified in a XML-based language, specifies which

files contain the source models for the transformations, the metamodels for these

models, what transformations should be invoked, the ordering between these

transformations, what outputs are produced and where these outputs must be stored.

In order to apply aspectual templates to a transformation a new workflow is created.

This workflow calls the original workflow and specifies which aspectual templates are

applied over the original transformation. Using this technique is possible to use several

aspectual templates over a transformation by changing the workflow that applies the

template.

 31

CHAPTER 3: Variability Management

with AOP and MDD Technologies

Aspect-Oriented Programming (AOP) (Kiczales et al, 1997) and Model-Driven

Software Development (Beydeda et al. 2005) have appeared in the recent few years as

new technologies that improve the development of software systems. Both technologies

have revealed initially to have important benefits regarding placement and configuration

of variations in the context of a Software Product Line.

This chapter evaluates currently existing Aspect-Oriented Programming (AOP) and

Model-Driven Development (MDD) tools and technologies regarding variability

management, in Software Product Lines (SPL). They are compared to traditional tools

and techniques in this context. The goal of this evaluation is to identify what are the

novel and positive contributions of AOP and MDD related to variability management, at

the implementation level, in SPL. Then, strengths and weaknesses of AOP and MDD

will be analyzed, how each one can complement each other will be finally discussed.

We have carried out this task before defining TENTE, in order to get better insights

about how MDD/AOP can help to variability management in SPL. This chapter is a

survey of a longer technical report (AMPLE D2.2, 2007). Interested reader can find

further details about this evaluation in such a document.

3.1 A Taxonomy of Variation in SPL

This section gives a brief explanation of the different kinds of variability that might

appear in a SPL. This taxonomy will serve to evaluate each AOP/MDD mechanism of

variability management against each kind of variability described.

(1) Variation in structure

A Software Product Line is said to have variation in structure when is possible to

derive two different products with a different structure, although they could offer the

same functionality. For instance, in the case of the Smart Home, it is possible two

CHAPTER 3: Variability Management with AOP and MDD Technologies

32

derive two specific homes with the same facilities, but a different number of rooms,

floors or lights per rooms. These two products differ in number of feature instances.

Structural variation is mainly concerned with the creation of a different number of

instances when the product is started. We called to this problem, “the problem of the

variable constructor”. For instance, in the SmartHome case study, if Light

Management is selected, the HouseGateway component will have to keep references to

all the light devices deployed in the House. These corresponding light objects need also

to be created. As the creation of the light objects as the setting of the references to these

lights are variable pieces of code.

Additionally, a second problem could appear when the presence or not of one object

motivates a change in the behavior of other objects. We named this second problem,

“the problem of the structurally dependent behavior”. For instance, in the SmartHome

case study, if Smart Heating Management is selected, the heaters have to notify to the

HouseGateway about temperature changes, so the order to open or close the windows

can be given. Nevertheless, this behavior is only necessary if there are windows to be

managed in the same room of the heater, therefore it depends of the structure of the

specific product.

(2) Variation in data

Variation in data refers to the possibility of deriving two specific products from the

same SPL which operate with different input, output or intermediate data. We

distinguish basically two different kinds of variation in data:

(1) The data types are not the same. For instance, in the SmartHome case of study,

we could have had a heater that works with temperatures expressed as integers,

but the thermometer it is connected to sends temperatures measured as float

numbers.

(2) The data types are the same, but they are semantically different. For instance,

heaters in the SmartHome SPL accept float numbers as temperature values, but

these float numbers could have expressed temperatures either in Celsius or

Fahrenheit.

 CHAPTER 3: Variability Management with AOP and MDD Technologies

 33

(3) Variation in behavior

Variation in behavior refers to the possibility of deriving two specific products from

the same SPL which present different behavior.

We distinguish three different kinds of variation in behavior (which are not mutually

exclusive):

 Variation that implies the addition of new software modules which provides new

functionalities. (e.g. a new feature like light management is added).

 Variation in the implementation of a service (e.g. different LightController classes

can implement a same ILightManagement interface).

 Variation in how the different services are coordinated (e.g. smart heater

management controlling the window and heater management).

(4) Variation in quality

Variation in quality refers to the possibility of deriving two specific products from

the same family which present different quality attributes.

These variations in quality can be due to different reasons: (1) a variation in the

internal implementation of one or more methods of one or more classes (e.g.

implementation of a method with different performance); (2) a variation in the quality

attributes (e.g. different schemas) that are applied over a software module.

For instance, in the Smart Home case of study, the HouseGateway might use

different data structures for storing the identifier for the different devices. Each data

structure will have a different performance and memory consumption. Similarly,

different fault-tolerance schemas could be applied.

(5) Variation in environment

Variation in environment refers to the possibility of deriving two specific products

from the same family that are deployed in environments with different characteristics.

We identify three different kinds of problems we need to address:

 The software modules that comprise a specific product are distributed into

different kind of nodes (e.g. a SmartHome GUI component could be deployed in

lightweight devices, such as PDA, or on a common PC).

CHAPTER 3: Variability Management with AOP and MDD Technologies

34

 The software modules that are part of a specific product could be distributed on

nodes differently. For instance a typical web information system is comprised of web

interfaces, a business layer and a database. This information system can be deployed

using a two-tier schema (the business layer and the database layer are deployed in the

same server) or a three-tier schema (the business layer and the database layer are

deployed in different servers).

 A specific product deals with different external services (e.g. a SPL could require

a payment platform, such as CreditCard service. Several services are available. Thus,

depending on the selected service some variations could emerge, such as different

method signatures in the interface of the services or different access protocols).

(6) Variation in technology

Variation in technology refers to the possibility of deriving two specific products

from the same family of products which are constructed using different software

technologies or abstractions. By software technology or abstraction we mean different

programming languages, different programming techniques (e.g, recursion vs iteration)

and so forth.

We have identified two potential sources for variation in technology at the

implementation level:

 Changes the programming language.

 Changes in the set of abstractions, primitives, techniques or guidelines that are

used to construct the software (e.g. synchronous messages or events).

 CHAPTER 3: Variability Management with AOP and MDD Technologies

 35

3.2 AOP/MDD Mechanism for Variability

Management

This section gives a brief explanation of the main Aspect-Oriented and Model-Driven

mechanisms for variability management in Software Product Lines. Each mechanism is

described below.

(1) Joinpoint interception

Joinpoint interception can be considered the most basic Aspect-Oriented mechanism,

which is present in all of Aspect-Oriented languages, although under different forms

and with some slight differences.

An aspect is a special module for encapsulating crosscutting concerns. An aspect

encapsulates a crosscutting concern and provides its functionality through a set of

advices (similar to object methods). These advices are not explicitly invoked by the

software modules, instead they are triggered automatically. How and when these

advices require being executed is specified by means of special composition rules,

called pointcuts, which designate logic (in program code) or instants (in program

execution) at which advices must be executed. The set of valid points of a program code

which can be designated by a pointcut are called joinpoints. Finally, a kind of

compiler/pre-processor is the responsible of composing all these pieces of code together

as specified by the pointcuts. This composition process, called weaving, can be

performed at compile time (static weaving), load-time or even run-time (dynamic

weaving).

We have selected AspectJ (Kiczales et al, 2001) for illustrating this Aspect-Oriented

mechanism because AspectJ can be considered the most mature and well-known

Aspect-Oriented language.

(2) Intertype declarations

An intertype declaration is a mechanism that combined with joinpoint interception

allows modifying the structure of the code. An intertype declaration has to be

encapsulated inside an aspect. With intertype declarations is possible to add methods or

CHAPTER 3: Variability Management with AOP and MDD Technologies

36

attributes to a class, to change class inheritance, modify existing methods, override

existing attributes, etc.

AspectJ supports this mechanism, so we have selected AspectJ as language for

evaluating this mechanism for the same reasons as in the previous point.

(3) Family polymorphism plus mixin composition

A family class
2
 is a large-scale piece of functionality which involves a group of

related classes. Abstraction, late binding, and subtype polymorphism is supported at the

level of family classes. A family class is a special class which can contain inner classes

called “virtual classes”. Just like methods and fields, they are also members of instances

of their enclosing family class, called family object. Hence, at any time during

execution their meaning is relative to the dynamic type of the family object. Subclasses

of a family class can refine inherited inner classes (further-binding). In such further

binding, we can override inherited methods, add new methods or new state, as well as

add additional superinterfaces and superclasses.

Mixin composition is a composition mechanism that allows a family class to inherit

from more than one super class, with the constraint that super classes must have a

common super type. A special linearization method is used to avoid conflicts in the

composition.

We have selected CaesarJ (Aracid et al, 2006) for evaluating this variability

management mechanism because CaesarJ can be considered the most mature and well-

known language implementing family polymorphism plus mixin composition.

Moreover, CaesarJ, for internal constraints of the AMPLE project, must be the target

language of the TENTE approach.

(4) Code Generation

Code generators are tools that allow the automatic generation of source code from

some sort of model. The rules for the code generation are defined in one or more code

generator template files, which specify how the code must be produced according to the

contents of one or more input models. The input model can vary from a simple list of

parameters to a UML model. These rules are interpreted by a code generator engine.

2
 Other terms used in literature for family classes are collaborations, layers, teams, feature classes…

 CHAPTER 3: Variability Management with AOP and MDD Technologies

 37

When used for variability management, the goal of code generation to automatically

generate the variable code of a Software Product Line, using as input some model that

indicates what features have been selected or unselected. For our evaluation, we will

consider that the generated code is common Object-Oriented code. Figure 3-1 shows the

general schema of a code generator tool in which several template files are applied to an

input model file, generating several source code files as a result.

Code

Generator

Engine

Template

file 1

Template

file 2

Template

file 3

Source file 2

Input Model

Source file 3 Source file 4Source file1

Figure 3-1 Code generation general schema

We have selected Java Emitter Template
3
 (JET) as a representative of the code

generation variability mechanism for the evaluation. JET is a subproject of Eclipse

Modeling Framework (EMF) (Budinsky et al, 2003). A JET template includes fixed

code that is written directly on the output source code language. Inside the source code

special tags are used to insert code depending of the input parameters. We have selected

JET because it is a well-known and exemplar code generator and we have previous

experience using it.

3
 http://www.eclipse.org/modeling/m2t/?project=jet

CHAPTER 3: Variability Management with AOP and MDD Technologies

38

3.3 Results of the evaluation

This section summarizes the results of our evaluation, outlining benefits and drawbacks

of each variation mechanisms as compared to each other. Further details about this

evaluation can be found in Nebrera et al (AMPLE D3.2, 2007).

The results of the evaluation are presented through tables 3-1 to 3-6. Each column

refers to one of the Aspect-Oriented or Model-Driven variation mechanism analyzed.

Each row refers to a particular variability scenario (e.g. changing the coordination

protocol) inside a specific kind of variation (e.g. variation in structure). Each cell

contains a short sentence that outlines if the corresponding variation mechanism

improves or not the current state-of-art and brief justification for such a sentence. If

there is improvement, the variation mechanism is considered as suitable for dealing with

that kind of variation, if there is not such an improvement, it is considered as not

suitable. For the cases where the mechanism can be used but without convincing

benefits, the variation mechanism is considered just as usable.

Variation in

structure

Joinpoint

interceptions

Intertype

declarations

Feature classes JET code generator

The problem of

the variable

constructor

Not suitable (the

separation does not

provide clear

benefits)

Not suitable (no

improvement over

joinpoint

interception)

Not suitable, the

solution is the same

one than for object

orientation

Suitable, automatically

generation of the

initialization code

The problem of

behavior

structurally

dependent

Suitable, especially

if there is

crosscutting.

It separate the

variation from the

original code

Not suitable, no

improvement over

joinpoint

interception

Suitable if there is

no crosscutting,

helps to

encapsulate

dependencies

avoiding class

castings

Suitable if there is no

crosscutting, avoid

manual modifications to

select between variants

Table 3-1 Variation in structure results

Variation in

data

Joinpoint

interceptions

Intertype

declarations

Feature classes JET code generator

Different data

types

Suitable, avoid the

use of castings and

modifications of the

source code,

quantification for

dealing with

crosscutting

Not suitable, no

improvement over

joinpoint

interception

Suitable but

achieving only

encapsulation

benefits and

reusability

Suitable if is solved by

parameterization of

references.

Suitable by

parameterization of

methods if there is no

crosscutting

Semantically

different data

types

Suitable, same

solution than for

different data types

Not suitable, no

improvement over

joinpoint

interception

Suitable, same

solution than for

different data types

Suitable, same solution

than for different data

types

Table 3-2 Variation in data results

 CHAPTER 3: Variability Management with AOP and MDD Technologies

 39

Variation in

behaviour

Joinpoint

interceptions

Intertype

declarations

Feature classes JET code generator

Addition of new

components with

new

functionalities

Not suitable, (the

separation does not

provide clear

benefits) Not clear

mechanisms for

adding new

interfaces.

Not suitable, no

improvement over

joinpoint

interception

No suitable, the

solution is the same

one than for object

orientation

Suitable, automatically

generation of the

initialization code and

new interfaces.

Variation in the

implementation

of one service

Not suitable, no

improvements

against object-

oriented techniques

Not suitable, no

improvement over

joinpoint

interception

Suitable but

achieving only

encapsulation

benefits and

reusability

Suitable, avoid manual

code modifications

Variation that

affects several

services or

interfaces

Suitable, due to the

crosscutting nature of

the problem

Not suitable, no

improvement over

joinpoint

interception

No suitable, no

mechanism to solve

the crosscutting

No suitable, no

mechanism to solve the

crosscutting

Variation in how

the different

services are

coordinated

Suitable, decouple

coordination from

computation and

encapsulate the

crosscutting

coordination

Not suitable, no

improvement over

joinpoint

interception

No suitable, no

mechanism to

decouple

coordination from

computation, no

solution for the

crosscutting

No suitable, no

mechanism to decouple

coordination from

computation, no solution

for the crosscutting

Table 3-3 Variation in behavior results

Variation in

quality

Joinpoint

interceptions

Intertype

declarations

Feature classes JET code generator

Internal method

implementation

Not suitable, no

improvements as

compared with object

orientation

Not suitable, no

improvement over

joinpoint

interception

Suitable but

achieving only

encapsulation

benefits and

reusability

Suitable in absence of

crosscutting, simplifies

variant selection

Quality attributes Suitable, mainly due

to the crosscutting

nature of quality

attributes

No suitable, no

improvement over

joinpoint

interception

No suitable, no

solution for the

crosscutting

No suitable, no solution

for the crosscutting

Table 3-4 Variation in quality results

CHAPTER 3: Variability Management with AOP and MDD Technologies

40

Variation in

environment

Joinpoint

interceptions

Intertype

declarations

Feature classes JET code generator

Node type:_

implementing

several

components

Not suitable, (there

is not clear benefits

for the separation of

the code)

Not suitable, no

improvement over

joinpoint

interception

Suitable but

achieving only

encapsulation

benefits and

reusability

Suitable, no

modifications needed to

select between variants

Node type:

managing

alternative

references

Suitable to externally

manage the

alternative references

Not suitable, no

improvement over

joinpoint

interception

Suitable, no

modifications of

the original code,

encapsulation of

dependencies

Suitable, no

modifications needed to

select between variants

Deployment

configuration

Usable, helps isolate

the remote

communication from

the original code and

solve the

crosscutting. Not

clear benefits over

current middleware

technologies.

Not suitable, no

improvement over

joinpoint

interception

No suitable, no

solution for the

crosscutting

No suitable, no solution

for the crosscutting

External

services

Suitable, facilitate

the implementation

of adapters for the

external services

Not suitable, no

improvement over

joinpoint

interception

Suitable in absence

of crosscutting

Suitable in absence of

crosscutting

Table 3-5 Variation in environment results

Variation in

technology

Joinpoint

interceptions

Intertype

declarations

Feature classes JET code generator

Programming

language

Not suitable, no

mechanism to solve

the problem

Not suitable, no

mechanism to solve

the problem

Not suitable, no

mechanism to solve

the problem

Not suitable, no

mechanism to solve the

problem at

implementation level

Set of

abstractions,

primitives and

guidelines

Suitable in cases

where there is

crosscutting in the

solution and the

solution can be

encapsulated into an

aspect.

Not suitable, no

improvement over

joinpoint

interception

Suitable if there is

no crosscutting,

and the solution

can be

encapsulated into

an aspect.

Suitable if there is no

crosscutting, and the

solution can be

encapsulated into an

aspect.

Table 3-6 Variation in technology results

 CHAPTER 3: Variability Management with AOP and MDD Technologies

 41

3.4 Conclusions

This section comments on the results described in tables 3-1 to 3-6:

 Joinpoint interception has demonstrated to be an interesting mechanism for

dealing with certain kind of variability problems, particularly when dealing with

these problems implies dealing with crosscutting pieces of code. This is not

surprising, since joinpoint interception was precisely created for solving the lack of

modularization of crosscutting concerns (variable or not). From the 17 kinds of

variability analyzed, 7 of them could be solved with an improvement as compared

with the current state-of-art using joinpoint interceptions. Other important benefit of

this mechanism is that is able to modify a previously existing code without any

manual modification on it (although depending on the language, access to the source

code could be required in order to perform the weaving). This characteristic makes

joinpoint interception particularly suitable for implementing component adapters and

coordinators (Fuentes and Sánchez, 2005. Fuentes and Sánchez, 2007).

 Family classes provide some benefits related to reusability and in some degree to

scalability, since dependencies between variants are well-encapsulated. The main

variation mechanism behind family classes is inheritance between them. This

inheritance affects the virtual classes defined inside the family class. So, virtual class

of parent family classes can be extended and/or overridden in child family classes.

So, dependencies and relationships between classes are encapsulated into a family

class. This simplifies the management of such a dependency, which are now

automatically managed by the language compiler.

 Code generation offers the best solution, from the analyzed ones, for dealing with

the problem of the variable constructor, since it allows the generation of large

amounts of initialization code in an easy and manageable way.

 In any Aspect-Oriented case, variability management depends on if a certain

aspect is introduced or not into a compilation unit. These mean a specific make or ant

file need to written for each specific product inside a SPL. Code generation can be

used to construct a template make file, which generates a specific make file for a

specific configuration of variants. Additionally, some parts of these aspects need to

be manually written at the application engineering level. These parts often follow a

well-defined pattern than can be written as a template code generator that, with the

CHAPTER 3: Variability Management with AOP and MDD Technologies

42

adequate input parameters, generates the corresponding aspect for a specific product

and variants configuration.

There is no mechanism able to solve all kinds of variations itself. Each one of them

offers different advantages and disadvantages for each particular case. It seems that the

combination of code generation and family classes plus mixin composition allows

solving almost all variability types that can be found in the context of a Software

Product Line. Thus, we have opted for creating a Feature-Oriented Model-Driven

process, which uses family classes plus mixin composition, both at the domain and

application engineering levels. Code generators are used to generate code skeletons at

the domain engineering level and the complete code for specific products at the

application engineering level. CaesarJ was selected as target language, since it is the

most well-known and mature language providing family polymorphism plus mixin

composition. The xPand language of the openArchitectureWare Model-Driven suite was

selected as code generation language by internal constraints of the AMPLE project.

 43

CHAPTER 4: Model-Driven Feature

Oriented Software Product Lines:

The TENTE Approach

This chapter provides a general overview of TENTE
4
, our Feature-Oriented Model-

Driven process for Software Product Line Engineering with advanced mechanisms for

separation of concerns. TENTE uses advanced mechanisms, such family polymorphism

pus mixin composition, for separation of concerns both at the architectural and

implementation levels.

4.1 TENTE OVERVIEW

Although some processes currently exists that applies advanced techniques for

separation of concerns and/or Model-Driven techniques to Software Product Line

engineering (Trujillo et al, 2007; Völter and Groher, 2007; Laguna et al, 2007), there is

a general lack of processes that integrate all them. Advanced techniques for separation

of concerns at the implementation level, often do not have a corresponding counterpart

at the modeling level. Similarly, processes that provide advanced separation of concerns

through the complete software lifecycle (Laguna et al, 2007), often do not take

advantage of Model-Driven techniques.

In order to overcome these shortcomings, the TENTE approach presents an

innovative process for Software Product Line architectural design and implementation

that integrates relevant advances, from a SPL point of view, for separation of concerns,

such as family polymorphism and mixin composition, and MDD technologies.

4
 TENTE is the Spanish name for Lego. We have selected this name because we view an SPL as a Lego

game: it is about constructing specific products from prebuilt blocks.

CHAPTER 4: The TENTE Approach

44

Figure 4-1 General overview of TENTE

TENTE is comprised of five steps, as depicted in Figure 4-1. The process covers the

architectural design and implementation software development stages, both at the

domain and application engineering levels. Architectures are expressed in UML 2.0,

according to the AMPLE architectural modeling language (AMPLE D2.2, 2007). The

implementation language selected is CaesarJ (Aracic et al, 2006), a subset of the

Domain Engineering Application Engineering

[1..*]

[1..*]

Requirements Engineering

Architectural Design

Implementation

VML4RE

[1..*]

[1..*]

VMLArch

1

2

3

<< component >>

<< component >>

B

C

4

5

cclass A {

 cclass X {

 // TODO

 }

 …...

}

cclass B {

 cclass Y {

 // TODO

 }

 …...

}

cclass A {

 cclass X {

 int counter;

 }

 …...

}

cclass B {

 cclass Y {

 Object foo;

 }

 …...

}

cclass MyProduct extends B & C {

 B myB = new B();

 C myC = new C();

 …...

}

B is a manual refinement of A

B is manually constructed from A

A uses B

A

A

A

B

B

B

A B B is automatically generated from A

Legends

<< component >>

<< component >>

<< component >>

A B

C

 CHAPTER 4: The TENTE Approach

 45

upcoming AMPLE implementation language (AMPLE D3.2, 2007). The first three

steps correspond to the Domain Engineering level. They serve to create the

infrastructure from which specific products will be derived. The last two steps

correspond to the Application Engineering level and they serve to create specific

products inside a Software Product Line. The whole process is described as follows:

1. Architectural Design. First of all, an architectural model for the SPL is

constructed (Figure 4-1, label 1). This model, which we have named reference

architecture, contains the architectural design of both the commonalities and the

variabilities of a complete family of products. Variability specification, i.e. the

declaration of which parts of the architecture are variable and why they are variable, is

expressed by means of cardinality-based feature models (Czarnecki et al, 2005). The

architectural model is designed in UML 2.0. Coarse-grained variants are separated in

different UML packages, which are combined by means of the UML merge operator,

similarly to Laguna et al (Laguna et al, 2007). The link between the feature model and

the architecture expressed in UML 2.0 is established using VML (Variability Modelling

Language) (Loughran et al, 2008, Sánchez et al, 2008), an innovative language for

connecting variability specification (i.e. problem space) with variability realization (i.e.

solution space). A VML specification also contains all the information required for

automatically deriving the architectural model of a specific product from the family

model.

2. Transformation of architectural models into implementation. Using model

transformations, part of the implementation is automatically generated from the

architectural model (Figure 4-1, label 2). More specifically, the skeleton of components

and the logic for connecting them are generated. The part corresponding to the behavior

of each method is left empty for being completed at the implementation level.

Separation of variants achieved at modeling level by using the merge operator is

preserved at the implementation level using CaesarJ family classes plus mixin

composition.

3. Domain engineering implementation. Each component skeleton previously

generated is completed with their corresponding business logic (Figure 4-1, label 3).

This step completes the domain engineering level. As a result, the entire infrastructure

for the automatic derivation of software products is obtained.

4. Derivation of a specific architectural model. This is the first step in our

process for deriving specific products inside the SPL. First, a configuration of the

CHAPTER 4: The TENTE Approach

46

feature model, i.e. a valid selection of variants to be included in a specific product, is

created. This configuration specifies what variants must be included in a specific

product. Using this configuration, the architectural model of the desired product is

automatically derived from the family model, using model transformations (Figure 4-1,

label 4).

5. Derivation of a specific implementation. Based on the configuration created in

the previous step and the architectural model generated from that configuration, the

complete implementation of a specific product is automatically generated by code

generation templates (Figure 4-1, label 5). This implementation uses the components

created in step 3, which were partially generated in step 2.

Advanced mechanisms for separation of coarse grained variants enable the

encapsulation of variable elements in separate units. By coarse-grained variant, we

mean a variable feature of a Software Product Line, related to a coherent set of

functionality, which implies the addition of new components/classes, or non-trivial

modifications to a set of components/classes that are part of the Software Product Line

architectural design or implementation. For instance, considering the Smart Home case

study from Chapter 2, the automatic light management is considered a coarse-grained

variant. This separation of coarse grained variabilities simplifies variability management

and composition, therefore facilitating product derivation. Separation of variants is kept

during all the process, both at the architectural design and at the implementation level.

Moreover, MDD techniques automate part of this process, such as the generation of the

implementation skeletons or the product derivation process, avoiding repetitive and

tedious tasks to be performed manually.

TENTE, as already mentioned, is an innovative process for Feature-Oriented Model-

Driven architecture design and implementation of Software Product Lines. TENTE

combines advanced techniques for the separation of concerns, such as Feature-Oriented

decomposition by means of family polymorphism plus mixin composition (Herrman,

2002; Aracic et al, 2006) with MDD techniques, both at the domain and application

engineering levels. The use of advanced techniques for the separation of concerns

facilitates the separation of reusable software assets through the software lifecycle,

whereas Model-Driven techniques enable the automation of repetitive tasks of SPL

engineering, such as the engineering of specific products.

Throughout all the process steps traceability information is gathered and stored in a

traceability repository developed in the context of the AMPLE project (AMPLE D4.1,

 CHAPTER 4: The TENTE Approach

 47

2008, Anquetil et al, 2009). Each one of the steps of the TENTE process are described

in detail in the next subsections as well as traceability information is gathered and

stored.

4.2 Domain Engineering

This section describes the first part of a the Software Product Line engineering process,

called Domain Engineering, which is the creation of the reusable software assets that

will be used for the creation of specific products.

4.2.1 Architectural Design

This subsection describes the starting point of the TENTE process, which is the

design of an architectural model for a complete family of products. This architectural

model plays the role of reference architecture from which the software architecture of

specific products will be derived. This architecture is modeled according to the

techniques and methods developed in the context of the AMPLE project (AMPLE D2.2,

2007). Reference architecture in TENTE is comprised of three related models (see

Figures 4-2 to 4-4):

1. A cardinality-based feature model (Czarnecki et al, 2005);

2. A UML 2.0 model (UML, 2005);

3. A VML (Variability Modelling Language) specification (Loughran et al, 2008;

Sanchez et al, 2008).

CHAPTER 4: The TENTE Approach

48

Smart Home

Floor(Int)

BasicFacilities

ComplexFacilities

Room(String) FloorGUI

[1..*]

[1..*]
[0..*]

Light

Heater

Window

[0..*]

[0..*]

LightSwitch Dimmer

[0..*]
[0..*]

Thermostat

WindowSensor WindowActuator Blind

GUI

RoomGUI

CentralGUI

SmartHeatingManagement

LightManagement WindowManagementHeaterManagement

Figure 4-2 Simplified SmartHome Cardinality based Feature Model

Figure 4-3 Simplified SmartHome Component View

 CHAPTER 4: The TENTE Approach

 49

Figure 4-4 Simplified SmartHome Composite Structure View

The cardinality-based feature model specifies which parts of the architecture are

variable and why they are variable. For instance, Figure 4-2 specifies a Smart Home can

have several rooms. Each room can have a different number of optional facilities, such

as automatic light (LightManagement), heater (HeaterManagement) or window

(WindowMnagement) management. SmartEnergyManagement is an advance optional

facility that ensures windows and heaters are managed coordinately in order to save

energy. Therefore, SmartEnergyManagement is a feature that requires and extends the

HeaterManagement and WindowManagement features. This feature model represents

variability specification or problem space.

Then, a variable architecture that satisfies this specification is designed using UML

2.0 model (Figure 4-3 and 4-4). This model represents variability realization or solution

space. The architectural design in UML 2.0 must incorporate mechanisms for making

the architecture variable. Coarse-grained variations, such as the incorporation of

automatic light management, are encapsulated at the design level into UML packages.

These packages are composed by means of UML merge relationships, using the

technique presented by Laguna et al (Laguna et al, 2007) and also adopted in the

AMPLE project (AMPLE D2.2, 2007). Each UML package represents an architectural

increment (Hendrickson and van der Hoek, 2007), which adds new components,

Composite Structure Diagram SmartHome[]

<<containerOnly>>

House

 : CentralGUI [0..1]

gui

 : HouseGateway [1]

actuators

services

 : Switch [0..*]

request

CHAPTER 4: The TENTE Approach

50

interfaces and so forth to an existing architecture, extending the architecture with new

functionalities.

Software architectures are modeled using two views. Each package contains these

two views, which represent the architectural design of an architectural increment or

coarse-grained feature. These views are described below:

1. Component View. It specifies the decomposition of a software system into a

set of interconnected component types. For instance, Figure 4-3 (package

InitialModel) specifies the software architecture of a Smart Home has as component

types HouseGateway and CentralGUI, amongst others, and that these component types

are connected through the interfaces IGUI and INotify. This view is modeled using

UML 2.0 component/class diagrams and it is typically constructed during domain

engineering, for specifying which component types (e.g. HouseGateway) are available

for constructing specific products.

2. Composite Structure View. It specifies how specific component instances are

connected and composed. For instance, Figure 4-4 specifies that each instance of the

House component has nested an instance of the HouseGateway component and that this

instance is mandatory. It also specifies that this instance is connected to a variable

number of Switch instances. This view is modeled using UML 2.0 composite structure

diagrams. This view is partially specified at domain engineering and completed at

application engineering, when the specific number of component instances to be

included in a specific product is known, i.e. when structural variability is solved. For

instance, depending on the specific number of lights to be included in a specific house, a

different number of Switch instances would be created.

 CHAPTER 4: The TENTE Approach

 51

00 import features <"/SmartHome.fmp">;

01 import core <"/SmartHome.uml">;

02

03 variant SmartHome {

04 SELECT:

05 createPackage("MyHome");

06 merge("MyHome","InitialModel");

07 } //SmartHome

08

09 variant LightManagement {

10 SELECT:

11 merge("MyHome","LightManagement");

12 UNSELECT:

13 remove("LightManagement");

14 } //LightMng

15

16 variant WindowManagement {

17 SELECT:

18 merge("MyHome","WindowManagement");

19 UNSELECT:

20 remove("WindowManagement");

21 } // Celsius

Figure 4-5 VML specification of the Smart Home case study

Finally, a VML specification (Figure 4-5) links the feature model and the UML 2.0

architectural model. VML (Loughran et al, 2008, Sánchez et al, 2008) is an innovative

language for facilitating variability management in architectural models. VML describes

For each variant, which actions must be carried out if a variant is selected or unselected.

Thus, the VML connects feature models and architectural models, specifying which

effect has over architectural models the decisions adopted over a feature model. This is

necessary as the mapping between decisions on feature models and their effects in

architectural models is rarely a simple one to one relationship.

This specification determines how to obtain the architecture of a specific product

given a configuration of the architectural feature model. This product derivation process

is as follows: First of all, a new UML package representing the final product being

derived is created. This package is called MyHome and it is initially empty. This empty

package would merge those packages that correspond to selected features, e.g.

LightManagement. The piece of code for creating this package (Figure 4-5, line 05) is

placed into the SELECT clause of the SmartHome feature, which is the root feature of

the architectural feature model depicted in Figure 4-2. In this case, this package merges

the InitialModel package (Figure 4-5, line 06), which represents the minimum and

core functionality that any SmartHome must have. Since this feature is always selected,

CHAPTER 4: The TENTE Approach

52

this piece of code is always executed and the MyHome package is always created and a

merge relationship is initially created between this package and the InitialModel

package.

When coarse-grained features encapsulated into UML packages, such as

LightManagement, are selected (Figure 4-5, line 10-11), a new merge relationship is

added between the package representing the final product, MyHome, and the package

representing the coarse-grained feature (e.g. LightManagement). This means that the

contents of this package will be included in the final product. In case a coarse-grained

feature represented by a UML package is not selected, e.g. LightManagement (Figure

4-5, line 12-13), the corresponding package is removed. We could let this package be

there, since if no merge relationship exists between this package and the package

representing the whole product, i.e. MyHome, the contents of this coarse-grained feature

will not be included in the final product anyway. Nevertheless, in order to reduce the

size and complexity of the models, we have opted for removing it.

Fine-grained variations can also be managed through different VML4Arch operators.

We refer the interested reader to Loughran et al (Lughran et al, 2008) for a more

comprehensive list of such operators.

As it can be noticed, the separation of coarse-grained variants into separate UML

packages improves feature traceability, since coarse-grained variations, such as

automatic light or window management, is most likely to be encapsulated into a single

UML package. This also simplifies VML specifications because large sequences of

operators, representing the addition of new components with new functionalities to a

base architecture, can be reduced to a simply merge between UML packages,

simplifying variability management. We refer the interested reader on the benefits of

this approach for modeling software architectures of SPL to a previous report (AMPLE

D2.2, 2007), where these benefits are discussed in-depth.

 CHAPTER 4: The TENTE Approach

 53

4.2.2 Code Generation

This subsection describes how the previous architecture model at the domain

engineering level is transformed into the skeleton for an implementation. The

implementation platform chosen is CaesarJ (Aracic et al, 2006), which is Java-based

Aspect-Oriented language that supports Feature-Oriented decompositions through

family polymorphism plus mixin composition (Gasiunas and Aracic, 2007).

This subsection details the model transformation process for generating an

implementation, in CaesarJ, corresponding to the architectural model, expressed in

UML 2.0, defined at the domain engineering level.

Figure 4-6 Two-level family classes schema

This transformation process generates two-levels of family classes, such as illustrated

in Figure 4-6. Each architectural increment, represented by a UML package, generates a

first-level family class. For instance, the LightManagement and HeaterManagement

architectural increments would lead to the creation of two family classes (see Table 4-

1). Each architectural increment is comprised of a set of interconnected architectural

components. Each architectural component (e.g. HouseGateway) is implemented as a

bundle of classes. Thus, each architectural component is implemented as a family class,

where the classes that implement a component are virtual classes of that family class.

This family class is nested in the family class corresponding to the package where the

architectural component is nested. Thus, each component is a second-level family class

contained inside a first-level family class.

Initial Model

House Gateway Room GUI

Light Management

House Gateway

General GUI

General GUI

Heater Management

House Gateway Room GUIGeneral GUI

A B C D E F

A

A

J K

Light ControllerRoom GUI

M N

Heater Manager

B

B

G

H C D

C D E F

E F L

I

CHAPTER 4: The TENTE Approach

54

This allows components can be refined in different architectural increments. For

instance, the LightManagement architectural increment can refine the HouseGateway

component defined in the InitialModel architectural increment, in order to add to the

HouseGateway the functionality regarding light manipulation. Internal classes of

architectural components can also be refined, taking advantage of the strong and

advanced type system provided by CaesarJ. This two-level family classes schema also

enables components that belong to a same architectural increment can be developed,

tested and compiled independently from the rest of components of the family of

products. The main benefit of making components independent one of each other is that

is possible to change the business logic of one component without modifying the other

components of the application.

The correspondence between architectural elements of UML 2.0 models and

implementation artifacts on CaesarJ is outlined in Tables 4-1 to 4-2 and then explained

more in-depth.

 CHAPTER 4: The TENTE Approach

 55

Architecture Implementation Rationale
Package First-level family

class

A package is mapped into a family class, which will contain

the result of transforming the elements the package contains.

A new Java package is also created for each architectural

package in order to preserve the implementation files

corresponding to different packages logically and physically

separated and avoid name conflicts.

Merge

relationship

Inheritance between

first-level family

classes.

A merge relationship between packages is mapped into an

inheritance relationship between family classes. The merged

package will act as the parent and the merging package as the

child in the inheritance relationship. Merging of multiple

packages is supported by CaesarJ, since CaesarJ allows

multiple inheritance by means of propagating mixin

composition.

Component Second-level family

class

Components are mapped into second-level family classes

which are contained in the first-level family class that results

of transforming the architectural package where the

component is contained. A new Java package, contained in

the Java package that results of transforming the architectural

package where the component is contained, is also created in

order to maintain the implementation files of the component

physically and logically separated and to avoid name

conflicts.

Component

inner class

Virtual class

contained in a

second-level

family class.

A component inner class is mapped into a virtual inner class,

which is contained in the family class result of transforming

the architectural component that contains the inner class.

Component inner classes which serve as type of a port are not

transformed following this rule.

Interface Interface An architectural interface is mapped to a common Java

interface. CaesarJ family classes do not support the definition

of interfaces inside them, thus, a generated Java interface is

placed in the Java package corresponding to the

transformation of the architectural package that contains this

interface, but it is placed outside the family class

corresponding to this architectural package.

Port Inner virtual class

contained in a

second-level

family class plus and

attributed contained

in that

second-level

family class

A port is an attribute of a component with a specific type,

which is a component inner class. Thus, the inner class is

transformed into a virtual inner class, which is contained in

the second-level family class that results of transforming the

architectural component that contains the inner class. The port

itself is mapped into an attribute contained in the second-level

family class that results of transforming the architectural

component that contains the port. This attribute has as type

the virtual inner class previously generated. In addition, a

getter method is generated in the second-level family class

that results of transforming the architectural component that

contains the port for retrieving the attribute corresponding to

the port.

Table 4-1 Correspondence between architectural elements in UML 2.0 and implementation artifacts in

CaesarJ (1)

CHAPTER 4: The TENTE Approach

56

Architecture Implementation Rationale
Required

relationship

between a port

and an

interface

A list of interfaces,

plus a connect

method.

A required relationship between a port and an interface is

transformed into an attribute which type is a list. The type of

the elements of the list is the Java interface that corresponds

to the transformation of the architectural interface that the

port requires. Moreover, a connect method for connecting

the implementation of two components through a port is

generated.

Provided

relationship

between a port

and an

interface

Interface

implementation

A provided relationship between a port and an interface is

transformed into an implements relationship between the

inner virtual class which corresponds to the transformation of

the inner class that serves as type for the port and the Java

interface result of transforming the architectural interface.

Attribute Java attribute plus

getters and setters

Attributes of architectural components and classes are

mapped into a Java attribute plus the corresponding pair of

getter and setter methods (depending upon attribute visibility

and kind, e.g. read-only attributes do not generate a setter

method). Attributes of architectural interfaces only generates

the pair of getter and setter method, since Java does not allow

the declaration of attributes in interfaces. An attribute is

contained, in the implementation, in the result of transforming

the architectural classifier that owns this attribute.

Method Java method Methods of architectural components, interfaces and classes

are mapped into Java methods. An method is contained, in the

implementation, in the result of transforming the architectural

classifier that owns this method.

Table 4-2 Correspondence between architectural elements in UML 2.0 and implementation artifacts in

CaesarJ (2)

Package to first-level family class

As already commented in Table 4-1, each architectural increment or coarse-grained

reusable software asset, represented by a package in UML 2.0 is transformed into first-

level family class in CaesarJ, with the same name as the architectural package (See

Figure 4-7 and Table 4-1). This first-level family class will serve as container for the

result of transforming the architectural elements contained in this package. Moreover, in

order to keep the files corresponding to the implementation of an architectural

increment logically and physically separated, a new Java package is created, with the

same name as the architectural package.

 CHAPTER 4: The TENTE Approach

 57

Merge to inheritance between family classes

A merge relationship between two packages at the architectural level is transformed

into an inheritance relationship between the first-level family classes corresponding to

the result of transforming the packages participating in the merge relationship. The

family class corresponding to the merging package will act as child family class and the

family class corresponding to the merged package will be the parent family class.

Moreover, a Java package import clause is added to the beginning of each

implementation file of the merging package, in order to make the elements of the parent

family-class, corresponding to the merged package, visible by the implementation files

of the merging package.

Figure 4-7 shows an excerpt of the architectural design of the Smart Home case

study, in which only the packages representing architectural increments and

relationships between these packages are illustrated. Table 4-3 shows the

implementation artifacts generated when transforming the model depicted in Figure 4-7.

Figure 4-7 Package mapping, model example

Table 4-3, third row shows the result of transforming the HeaterManagement

package. First, a family class with name HeaterManagement is created (Table 4-3,

third row, line 03). The HeaterManagement package merges the InitialModel

package, (Figure 4-7, label 1). Thus, firstly, a Java import clause is added at the

CHAPTER 4: The TENTE Approach

58

beginning of the implementation file (Table 4-3, third row, line 01), in order to make

the implementation artefacts resulting of transforming the InitialModel package,

visible in this implementation file. Then, we make that the HeaterManagement inherits

from the InitialModel, extending it with new components and features (Table 4-3,

third row, line 03). A similar strategy is applied to the WindowManagement package. In

the case of the SmartEnergyControl package, this package merges two packages at the

same time (Figure 4-7, labels 3 and 4). This means that the SmartEnergyControl

family class resulting of transforming this architectural package must inherit from two

family classes, i.e. from HeaterManagement and WindowManagement at the same time.

Fortunately, CaesarJ supports multiple inheritance between family classes due to

propagating mixin composition (Table 4-3, fifth row, lines 04 and 05)

Architectural

Package

Implementation code generated

InitialModel

00 package initialModel;

01

02 cclass InitialModel{

03 …

04 }

HeaterManagement

00 package HeaterManagement;

01 import InitialModel.*;

02

03 cclass HeaterManagement extends InitialModel{

04 …

05 }

WindowManagement

00 package windowManagement;

01 import InitialModel.*;

02

03 cclass WindowManagement extends InitialModel{

04 …

05 }

SmartEnergyControl 00 package smartEnergyControl;

01 import HeaterManagement.*;

02 import WindowManagement.*;

03

04 cclass SmartEnergyControl extends WindowManagement &

05 HeaterManagement{

06 …

07 }

Table 4-3 Code generated for the architectural model depicted in Figure 4-7

 CHAPTER 4: The TENTE Approach

 59

Architectural component to second-level family class

An architectural component is transformed into a family class, which contains set of

classes. These classes implement the functionality of the component. This family class

is placed inside the family class that results of transforming the architectural package

where the architectural component is contained. Thus, the family class resulting of

transforming an architectural component is a virtual class of the family class

corresponding to the architectural package that contains the component. Because of this

reason, we call the family classes resulting of transforming components, second-level

family classes. The use of family classes enables the implementation of a component

declared in one package can be refined in successive family classes representing

different architectural increments that extend the former one.

In addition, all components inherit from a core family class, called Component,

which provides some infrastructure methods and functionality for component

management. For instance, this infrastructure adds an ID attribute to all components in

the implementation in order to be able to uniquely identify a component instance.

Figure 4-8 HouseGateway architectural component

Figures 4-8 and 4-9 shows the transformation of the HouseGateway component,

which is included in the InitialModel package into implementation artifacts. The

transformation of the port is not explained here, since it will be covered later, in the

corresponding section. Using the package to first-level family class transformation rule,

code of lines 00-02 is obtained. For the HouseGateway component a second-level

family class is generated (line 04). As commented, this family class extends Component.

Some infrastructure methods, such as standard constructors, are also generated.

CHAPTER 4: The TENTE Approach

60

Figure 4-9 Code generated when transforming the HouseGateway component

CaesarJ supports the definition of virtual classes of family classes in separate files.

This feature has been demonstrated to be useful for separating the implementation of the

different components contained in a same first-order family class in separate files,

facilitating the management of these implementation files and the independent

development of components.

Figure 4-10 shows this technique applied to the generation of the code for the

HouseGateway component. In this case, an empty InitialModel family class, and a

Java package with the same name, has already been created. In this case, line 00 of

Figure 4-10 is used to declare that all classes and family classes defined in this file are

virtual classes of the InitialModel family class, which is placed in the InitialModel

Java package. In this way, the family class declared in line 03 is a virtual class, or

second-level family class, nested in the InitialModel family class.

Figure 4-10 Separation of implementation files for components

Component inner class to virtual class of a second-level family class

Component inner classes are implemented as inner virtual classes of the second-level

family class which results of transforming the component that contains the class. This

enables these inner classes can be refined in successive family classes extending this

second-level family class. There is not any need of inheriting from any special

infrastructure class, such as in the component case. A virtual class is declared inside the

00 cclass InitialModel.InitialModel;

01

03 public cclass HouseGateway extends Component {

04 ...

05 }

00 package InitialModel;

01

02 public cclass InitialModel {

03 ...

04 public cclass HouseGateway extends Component{

05 ...

06 }

07 ...

08 }

 CHAPTER 4: The TENTE Approach

 61

same file that the second-level family class that contains this class. In addition, since

components are managed as black-box entities, the generated virtual class is declared as

protected. Classes that are types of ports are excluded of this rule, because of the

reasons that will be exposed when commenting the Port to inner class plus attribute

transformation rule.

Figure 4-11 Floor inner class

Figure 4-11 shows an excerpt of the architectural design of the Smart Home case

study, where an inner virtual class called Floor is added to the HouseGateway

component of the InitialModel package. Figure 4-12 contains the code generated

when transforming this architectural model. We suppose the first-level family class for

the package and the second-level family class for the component has already been

created as a result of applying the Package to first-level family class and Architectural

component to second-level family class transformation rules. Then, a virtual class

named Floor (Figure 4-12, line 05) is generated as result of transforming the Floor

inner class. This virtual class is contained in the second-level family class

corresponding to the HouseGateway architectural component. Lines 07-16 corresponds

to the transformation of the id attribute, which is explained in the next subsection.

CHAPTER 4: The TENTE Approach

62

Figure 4-12 Code generated when transforming the Floor inner class

Attribute to Attribute plus getter and setter methods

Each attribute in the architectural model is mapped into an attribute at the

implementation level. This attribute will be contained in the classifier at the

implementation level that results of transforming the classifier that contains the attribute

at the architectural level. For instance, if the attribute is contained in a component, it

would be placed in the second-level family class corresponding to the transformation of

the component. If the attribute is placed in a component inner class, it would be placed

in the virtual class corresponding to the transformation of the inner class.

Public attributes are converted to protected attributes in the implementation, and a

pair of getter and setter methods, and their corresponding logic is generated. If the

attribute is read-only, the setter method would be not generated. Protected and private

attributes keep the same visibility as at the architectural level, but getters and setters

methods are not generated.

Figure 4-12 lines 07-13 illustrate the code generated when transforming the id

attribute of the Floor inner class, depicted in Figure 4-12.

UML method to Java method

A method at the architectural level is transformed into a method at the

implementation level. The generated method will be contained in the classifier, at the

implementation level, that results of transforming the classifier that contains the method

at the architectural level. For instance, if the method is contained in a component, it

00 cclass InitialModel.InitialModel;

01

03 public cclass HouseGateway extends Component{

04 ...

05 protected cclass Floor {

07 protected String id;

08 public String getID(){

09 return id;

10 }

11 public void setId(String value){

12 id=value;

13 }

14 public void addRoom(){

15 // TODO: add logic to this method

16 }

17 }

 CHAPTER 4: The TENTE Approach

 63

would be placed in the second-level family class corresponding to the transformation of

the component. If the method is placed in a component inner class, it would be placed in

the virtual class corresponding to the transformation of the inner class. The body of the

method is left empty for being completed manually after generation.

Figure 4-12 lines 14-16 illustrate the code generated when transforming the

addRoom() method of the Floor inner class, depicted in Figure 4-11.

UML Interface to Java Interface

Architectural interfaces are transformed into common Java interfaces. CaesarJ does

not support the declaration of interfaces inside family classes. Therefore, an interface is

placed in the Java package resulting of transforming the architectural package where the

interface is contained, but outside the first-level family class corresponding to that

package. A separate file is generated for each interface.

Figure 4-13 shows an example of the architectural design of the SmartHome case

study, where an interface INotify is declared inside the InitialModel package. Figure

4-14 illustrated the code generated as a result of transforming this interface.

Figure 4-13 INotify interface

Figure 4-14 Code generated when transforming the INotify interface

Interfaces are declared outside the CaesarJ family class hierarchy, so it is not

possible to implement the merge relationships using inheritance between family classes,

00 package initialModel;

01 public interface INotify{

02 public String getID();

03 }

CHAPTER 4: The TENTE Approach

64

as we did for components. Nevertheless, an interface declared in one package can be

merged with an interface declared in other package by means of using inheritance

between interfaces.

Figure 4-15 INotify interface declared in two different packages related by a merge.

Figure 4-15 illustrates an example of the architectural design for the Smart Home

case study where an interface INotify is contained in the InitialModel and

HeaterManagement packages. The HeaterManagement merges the InitialModel

package, and the interface INotify of the HeaterManagement adds new methods to the

INotify interface of the InitialModel package. The generated code result of

transforming the INotify interface of the HeaterManagement package is depicted in

Figure 4-16. Line 01 shows the declaration of the interface at the implementation level.

The full name of the INotify interface is used in order to avoid name conflicts.

Figure 4-16 Code generated when transforming the INotify interface of the HeaterManagement

package

Hence, every time an architectural interface is mapped into implementation and the

package that contains this interface merges other package, we must check if an interface

with the same name exists in other packages which are reachable through the hierarchy

of merge relationships. If one interface with the same name is reachable, an inheritance

relationship between these interfaces must be created. The interface being mapped will

00 package HeaterManagement;

01 public interface INotify extends InitialModel.INotify {

02 public void newTemperature(String thermometer,int value);

03 public void newOutsideTemperature(double value);

04 }

 CHAPTER 4: The TENTE Approach

 65

be the child interface and the reachable interface the parent interface in the inheritance

relationship. If new reachable interfaces are discovered, we must check if this new

reachable interface can be reached from an interface from which the interface being

mapped inherits. If so, nothing happens, otherwise, a new inheritance relationship must

be created between the interface being transformed and the new reachable interface.

Again, the interface being mapped will be the child interface and the new reachable

interface the parent interface in the inheritance relationship. Multiple inheritance

between interfaces is allowed in Java, therefore, this technique is feasible.

Port to inner class plus attribute

An architectural port is comprised of: (1) a port declaration, which is like an attribute

of the component that contains the port, plus (2) a class that provides the type for a port.

This is due to the fact that ports in UML 2.0 can contain some behavior and, for

instance, ports are able to filter and redirect messages arriving or leaving the port. Thus,

the class that defines the type of the port is transformed into a virtual class that is

contained in the second-level family class that results of transforming the architectural

component that owns the port. The port itself is transformed into an attribute of the

second-level family class that results of transforming the architectural component that

owns the port. These attributes corresponding to ports are instantiated inside the

constructor of the second-level family class which corresponds to the transformation of

the component that contains the port. A getter method is generated by each attribute

corresponding to a port.

The mapping of the classes that serves as type for a port differs from the mapping of

common inner classes in that the generated classes must inherit from an infrastructure

class, called Port, in the same way, generated second-family classes that correspond to

components must inherit from Component. The infrastructure class Port provides

functionality for the management of unique identifiers of ports, linking of ports to

component instances and connections between ports of different components.

CHAPTER 4: The TENTE Approach

66

Figure 4-17 HouseGateway component with two ports

Figure 4-17 shows an example of the architectural design of the SmartHome case

study, which contains a HouseGateway component with two ports, called actuators

and sensors, which types are the classes actuatorPort and sensorPort, respectively.

Figure 4-18 shows the code generated when transforming this architectural model. First,

the classes that serve as type for the ports are transformed (Figure 4-18, lines 10-19). It

should be noticed that these classes, unlike common inner classes, inherit from the Port

class. Some infrastructure methods are also created. Then, two new attributes are

generated inside the HouseGateway second-level family class, as a result of

transforming the actuators and sensors ports themselves (Figure 4-18, lines 03-04).

These attributes are instantiated in the constructor of the second-level family class result

of transforming the architectural component (Figure 4-18, lines 05-09).

 CHAPTER 4: The TENTE Approach

 67

Figure 4-18 Code generated when transforming the HouseGateway component with two ports

Provided interface relationship to implements relationship

Provides relationships at the architectural level can be only established between a

port and an interface. A provides relationship between a port and an interface at the

architectural level is transformed into an implements relationship between the inner

virtual class corresponding to the transformation of the class which is the type of the

port and the interface generated as result of transforming the interface the port provides.

The methods of the interface are automatically copied in the inner virtual class and the

body of the method is left empty, for being completed manually after generation.

00 cclass InitialModel.InitialModel;

01 public cclass HouseGateway extends Component{

02 ...

03 protected ActuatorPort actuators;

04 protected SensorPort sensors;

05 public HouseGateway(String ID){

06 super(ID);

07 actuators = new ActuatorPort(this);

08 sensorts = new SensorPort(this);

09 }

10 public cclass ActuatorPort extends Port{

11 public ActuatorPort(Component value){

12 super(value);

13 }

14 }

15 public cclass SensorPort extends Port{

16 public SensorPort(Component value){

17 super(value);

18 }

19 }

20 }

CHAPTER 4: The TENTE Approach

68

Figure 4-19 Provides relationship between the services port and the INotify interface

Figure 4-19 shows an example of the architectural design of the Smart Home case

study. In this case, the services port provides the INotify interface. Figure 4-20

illustrates the code result of transforming this architectural model. Line 03 shows how

the inner virtual class SensortPort, which correspond to the transformation of the

inner class sensorPort, which is the type of the services port, implements the INotify

interface. Lines 05-07 show the empty body for the unique method of this interface.

Figure 4-20 Code generated when transforming the provides relationship between the services port

and the INotify interface

Required interface relationship to list of interfaces plus a connect method

Required relationships at the architectural level can be only established between a

port and an interface. A requires relationship at the architectural level means that a port

can be connected with other port, which provides the interface the former port requires.

00 cclass initialModel.initialModel;

01 public cclass HouseGateway extends Component{

02 ...

03 public cclass SensorPort extends Port implements INotify{

04 ...

05 public String getId(){

06

07 }

08 }

09 }

 CHAPTER 4: The TENTE Approach

 69

Thus, a requires relationship between a port and an interface is firstly transformed into

an attribute with a list of the required interface as type. We are creating a list because a

component instance can connect to a variable number of component instances through a

port. This attribute is contained in the inner virtual class that corresponds to the

transformation of the inner virtual class that is the type of the port. Thus, a port that

requires an interface can store references to other ports providing that interface.

Moreover, the code for initializing this attribute is added to the constructor of the inner

virtual class which corresponds to the transformation of the inner class which is the type

of the port. Finally, a connect method is generated. This method serves to connect the

port which requires the interface with ports that provide that interface.

Figure 4-21 Requires relationship between the request port and the INotify interface

Figure 4-21 shows an excerpt of the architectural design of the SmartHome case

study, where a request port, of type requestPort, requires an interface INotify.

Figure 4-22 is the resulting code of transforming this architectural model. As explained,

an attribute is created for holding the list of connected ports which provides the

interface that the port requires (Figure 4-22, line 04). This list has a type of its elements

the interface which is required by the port. The attribute is contained in the inner virtual

class that corresponds to the transformation of the inner virtual class which is the type

of the port. This list is a simple Java ArrayList because CaesarJ does not support Java

generics currently. In addition, the code for initializing this list is added to the

constructor of the inner virtual class where the list is contained (Figure 4-22, line 07).

Finally, a connect method is generated (Figure 4-22, line 09-11). This method serves

CHAPTER 4: The TENTE Approach

70

for connecting this inner virtual class, which is the result of transforming an inner class

which is the type of a port, with other inner virtual classes, which are result of

transforming inner virtual class which are types of port that provides the INotify

interface, i.e. with other inner virtual class of type Port, which, in addition, implements

the INotify interface.

Figure 4-22 Code generated when transforming the requires relationship between the request port

and the INotify interface

A port can provide and require several interfaces at the same time. If a port provides

several interfaces, the inner virtual class corresponding to the type of the port will

implement several interfaces, which is allowed in Java. If a port requires several

interfaces, the transformation rule would create several list of required interfaces and a

connect method for each interface the port requires. An example of the connection

between ports can be found in the subsection 4.5.

4.2.2 Component Implementation

Once the skeletons of an implementation corresponding to the architectural design of

the SPL have been generated, these skeletons are completed manually in order to get a

set of reusable components we can use to assemble specific applications at the

application engineering level.

Some implementation level variabilities, such as supporting two different versions of

a same API, could still be addressed using implementation-level techniques, such as

conditional compilation. The reader interested on which kind of variability can be

00 cclass InitialModel.InitialModel;

01 public cclass CentralGUI extends Component{

02 ...

03 public cclass RequestPort extends Port{

04 public ArrayList INotifyList;

05 public RequestPort(Component comp){

06 super(comp);

07 INotifyList=new ArrayList();

08 }

09 public void connect(INotify port){

10 INotifyList.add(port);

11 }

12 }

13 }

 CHAPTER 4: The TENTE Approach

 71

solved at the architectural level and which kind of variability must be solved at the

implementation level can read the AMPLE report (AMPLE D2.2, 2007). The reader

interested on how some kind of variability can be solved at the implementation level

using Aspect-Oriented techniques can read the AMPLE report (AMPLE D3.2, 2007)

about this topic.

At the end of this step, a set of components implementing the family of products is

obtained. We only need to appropriately instantiate and connect these components in

order to obtain a specific product. This is addressed by the application engineering

phase.

4.3 Application Engineering

At the domain engineering level, the entire infrastructure for the automatic construction

of specific products is created. This section describes the application engineering level,

i.e. the engineering of specific products as automatically as possible using the

previously created infrastructure.

4.3.1 Configuration of a Specific Architecture

At the application engineering level, a specific product is configured by selecting

those features that must be included in that product and instantiating and connecting

components according to that selection of features. Thus, the application engineering

phase starts with a valid selection of variants.

CHAPTER 4: The TENTE Approach

72

GroundFloor

Kitchen

CentralGUI

Smart Home

Heater
LightManagement

LivingRoom

HeaterManagement

FirstFloor

FloorGUI

RoomGUI WindowManagement

BedRoom

MainLight

Switch1 Switch2 Dimmer

Main Window

WindowSensor WindowActuator

Figure 4-23 Final product configuration

For instance, for the Smart home case study, a customer could decide to buy a Smart

Home with two floors, a ground floor and a first floor. The ground floor will have two

automated rooms, a kitchen and a living room. The kitchen will have light management,

controlling one light with two switches. The living room will have heater management

with one heater being controlled. The first floor would have a dedicated GUI and an

automated room, the bedroom. This room will also have a dedicated GUI and window

management controlling the main window of the bedroom. These selections serve to

configure the feature model of Figure 4-2, obtaining the configured feature model of

Figure 4-23.

The selection of features can be done using directly a feature model, dedicated

wizards, special tools for this purpose such as DecisionKing (Rabiser et al, 2007), or by

means of defining a metamodel compliant with the cardinality-based feature model and

transforming a model instance of this metamodel into a configuration of the cardinality-

based feature model that express the architectural variability (Stephan and Antkiewicz,

2008).

With a feature configuration, such as depicted in Figure 4-23, an architectural model

of the specific product is automatically generated from the architectural design of the

family of products, defined at the domain engineering level. This generation process is

carried out by executing the VML specification created on the domain engineering level

(see Figure 4-6). A VML specification is compiled into a set of low-level model

transformations, which implements the derivation of software architectures for specific

products given a selection of variants (Sánchez et al, 2008). These model

 CHAPTER 4: The TENTE Approach

 73

transformations are expressed in a general purpose model transformation language. The

execution of this automatically generates model transformations, with a valid

configuration model as input, generates automatically the software architecture for the

selection of variants specified by the configuration model. Thus, software architects can

benefit from the automation provided by model transformation languages, but they do

not need to learn any model transformation language, which is usually a non trivial task,

since these model transformations are automatically generated as result of compiling a

VML specification. A complete description of the VML implementation is beyond the

scoped o this work. We refer the interested reader to Sánchez et al (Sánchez et al, 2008).

Figure 4-24 Package structure of the architectural model of a specific product.

As a result of executing VML with the previous configuration model and the

reference architecture model as input, the specific architectural model depicted in

Figures 4-24 and 4-25 is obtained. This architecture contains only those packages and

components corresponding to selected features. For instance, the package corresponding

to the WindowManagement option has been removed, since no WindowManagement has

been selected. Finally, a new package MyHouse, representing the specific product, is

created. This package is empty and inherits from all leaf packages in the package

hierarchy, i.e. from all those packages that are not merged with other packages. The

goal of this package is to combine all selected features. This package represents the

complete product.

CHAPTER 4: The TENTE Approach

74

For each package, new component instances are also created and appropriately

connected according to the user configuration. For instance, Figure 4-25 shows a

composite structure diagram that specifies the structure of the house. New component

instances are created, and appropriately connected, for the different GUIs to be placed

along the house.

Figure 4-25 Application model composite structure diagram

At the end of this step we obtain the architecture of a specific product inside the

product line. This architectural model serves as input for automatically obtaining a

complete implementation of the product, which is explained in the next section.

4.3.2 Code Generation

Once the architectural model for a specific product has been obtained, this

architectural model is used to generate, by means of model transformations, a complete

implementation of this product, in CaesarJ. These transformations use and instantiate

the CaesarJ family classes created at the domain engineering level. The task of these

transformations is basically to instantiate, initialize and appropriately assemble the first-

Composite Structure Diagram step3[]

<<containerOnly>>

House

centralGUI : CentralGUI

request

roomGUI1 : RoomGUI

request

roomGUI2 : RoomGUI

request

floorGUI1 : FloorGUI

request

floorGUI2 : FloorGUI

request

roomGUI3 : RoomGUI

request

gtw : HouseGateway

services

 CHAPTER 4: The TENTE Approach

 75

level and second-level family classes, corresponding to architectural increments and

components, according to the customer selection.

This transformation process is carried out following the correspondences between

architectural elements, expressed in UML 2.0, and implementation elements, expressed

in CaesarJ, is outlined in Table 3 and commented with more detail below.

Architecture Implementation Rationale

Leaf package Final family class The new architectural package added to the architectural

model at the application engineering level, which is a leaf

package, is transformed into a new first-level family class,

which will serve to instantiate the final product. This

generated first-level family class will inherit from the first-

level family classes corresponding to the transformation of

the architectural packages this leaf package merges.

Component

Instance

Instantiated attribute

in the final family

class

Each component instance created in the architectural model at

the application engineering level is transformed into an

instantiated attribute, which is contained in the final family

class. This attribute has as type the second-level family class

corresponding to transformation of the architectural

component, which is the type of the component instance.

Inner class

Instance

Instantiated attribute

in the final family

class.

Each component inner class instance created in the

architectural model at the application engineering level is

transformed into an instantiated attribute, which is contained

in the final family class. This attribute has as type the virtual

inner class corresponding to transformation of the component

inner class, which is the type of this instance.

Attribute

initialization

Call to a setter

method

Each initialization of an attribute of an instance, at the

architectural level, is transformed into a call to the setter

method for updating the corresponding attribute of the

family-class result of transforming the architectural classifier

that contains the attribute.

Component

Instances

connection

Call to a connect

method

A connection between two component instances is

transformed into a call to the connect method of the inner

virtual class result of transforming the architectural port that

requires the interface through these components are

connected. As parameter of the connect method, the

attribute corresponding to the transformation of the port that

provides the interface through these components are

connected is used.

Table 4-4 Correspondence between architectural elements and implementation artifacts, at the application

engineering level.

Leaf package to final family class

The first step in the transformation process at the application engineering level

consists on generating the code for a final family class. This final family class is the

family class that will be used to instantiate the final product. This generated first-level

family class will inherit from the first-level family classes corresponding to the

CHAPTER 4: The TENTE Approach

76

transformation of the architectural packages the leaf architectural package merges.

Family classes not reachable from this final family class in the inheritance hierarchy are

excluded of the compilation process.

Figure 4-26 illustrates part of the code generated as a result of applying this

transformation rule to the architectural model of Figure 4-24. The code for creating a

final family class is generated. This family class inherits from the family classes

implementing coarse-grained reusable software assets selected by the customer, in this

case, LightManagement and HeaterManagement.

Figure 4-26 Code generated when transforming the leaf package of Figure 4-24

Component instance to instantiated attribute

In order to generate a final specific product we must also create all the component

instances that will comprise that specific product. This is achieved by means of

transforming all component instances, created in the specific architectural model at the

application engineering, into instantiations of the second-level family classes which

result of transforming the component which serves of type for the instances. These

instantiations are placed in the final family class that represents the specific product.

Figure 4-27 shows the result of applying this rule to the architectural model of

Figures 4-24 and 4-25. The code for appropriately instantiating the component instances

that will be part of the final product is generated (Figure 4-27, lines 02-09). This also

implies the generation of unique identifiers for each component instance.

00 cclass MyHome extends LightManagement & HeaterManagement {

01 ...

02 }

 CHAPTER 4: The TENTE Approach

 77

Figure 4-27 Generated initialization code for a specific product

Inner class instance to instantiated attribute

In order to adequately instantiate a component, we must also create the inner classes

that implement that component. This is achieved by means of transforming all instances

of a component inner class, created in the specific architectural model at application

engineering, into instantiations of the inner virtual classes which result of transforming

the component inner classes which serves of type for these instances. These

instantiations are placed in the final family class that represents the specific product.

Virtual classes of second-level family classes cannot be created directly due to CaesarJ

constraints on the type system. Therefore, these instances must be created calling to a

createInstance method, generated for this purpose, in the second-order family

classes. To ensure that everything is instantiated in the right order TENTE internally

creates an instantiation sequence with all the components and classes to be instantiated

and order it correctly to avoid inconsistencies.

Figure 4-28 shows the result of applying this rule to the architectural model

corresponding to the configuration of Figure 4-25. The internal data structure of the gtw

component instance is appropriately initialized. The methods createXXXInstance

(lines 03-08) returns an instance of inner class of the component.

00 cclass MyHome extends LightManagement & HeaterManagement {

01

02 // Component declaration and instantiation

03 HouseGateway gtw = new HouseGateway(“0”);

04 CentralGUI centralGUI = new CentralGUI(“1”);

05 FloorGUI floorGUI1 = new FloorGUI(“2”);

06 FloorGUI floorGUI2 = new FloorGUI(“3”);

07 RoomGUI roomGUI1 = new RoomGUI(“4”);

08 RoomGUI roomGUI2 = new RoomGUI(“5”);

09 RoomGUI roomGUI3 = new RoomGUI(“6”);

10

11 ...

12 }

CHAPTER 4: The TENTE Approach

78

Figure 4-28 Code generated when transforming the inner classes corresponding to the configuration of

Figure 4-25

Attribute initialization to setter method call.

Each initialization of an attribute of an instance to a certain value, at the architectural

level, is transformed into a call to a setter method. The method updates the

corresponding attribute of the family-class, result of transforming the architectural

classifier that contains the attribute.

Figure 4-28 shows the result of applying this rule to the architectural model

corresponding to the configuration of Figure 4-24. Lines 03-06 set the floors and rooms

identifiers for the components to know which part of the house controls each

component.

Figure 4-29 Code generated when transforming the attribute initialization corresponding to the

configuration of Figure 4-24

00 cclass MyHome extends LightManagement & HeaterManagement {

01 ...

02 // Inner classes definition and instantiation

03 HouseGateway.House houseData = gtw.createHouseInstance(“House”);

04 HouseGateway.Floor groundFloor = gtw.createFloorInstance(“groundFloor”);

05 HouseGateway.Floor firstFloor = gtw.createFloorInstance(“firstFloor”);

06 HouseGateway.Room kitchen = gtw.createRoomInstance(“kitchen”);

07 HouseGateway.Room bedRoom = gtw.createRoomInstance(“bedRoom”);

08 HouseGateway.Room livingRoom = gtw.createRoomInstance(“livingRoom”);

10 ...

11 }

00 cclass MyHome extends LightManagement & HeaterManagement {

01 ...

02 // Atribute initialization

03 groundFloor.setFloorId(“groundFloor”);

04 firstFloor.setFloorId(“firstFloor”);

05 livingRoom.setFloorId(“groundFloor”);

06 livingRoom.setRoomId(“livingRoom”);

08 ...

09 }

 CHAPTER 4: The TENTE Approach

 79

Component Instances connection to call to a connect method

Finally, we must connect the generated component instances in order they can

communicate among them. This is achieved by means of transforming the connections

between component instances specified in the composite structure diagrams (Figure 4-

24), into calls to connect methods. These methods are the connect method of the inner

virtual class result of transforming the architectural port that requires the interface. As

parameter of the connect method, the attribute corresponding to the transformation of

the port that provides the interface through these components are connected, is used.

For instance, in Figure 4-29 it is specified that the request port of the centralGUI

component instance must be connected to the services port of the gtw instance of the

component HouseGateway. In this case, the services port is which requires an

interface that is provided by the request port. Therefore the statement of Line 02 of

Figure 4-29 is generated. It consist on a call to the connect method of the services port

of the gtw instance with the request port of the centralGUI instance as parameter.

Figure 4-30 Code generated when transforming the port connection corresponding to the model of

Figure 4-24

After generating this final family class and the instantiation of components, the final

product is implemented and appropriately initialized. Nevertheless, some

implementation-level variabilities, such as selecting between two versions of a same

API might need still to be bound. For this task, tools such as pure:variants (Beuche,

2003) or Gears (Krueger, 2007) can help. This subject is beyond the scope of this

work.

00 cclass MyHome extends LightManagement & HeaterManagement {

01 ...

02 //Components interfaces interconnection

03 gtw.getServicesPort().connect(centralGUI.getRequest());

04 gtw.getServicesPort().connect(floorGUI1.getRequest());

05 gtw.getServicesPort().connect(floorGUI2.getRequest());

06 gtw.getServicesPort().connect(roomGUI1.getRequest());

07 gtw.getServicesPort().connect(roomGUI2.getRequest());

08 ...

09 }

CHAPTER 4: The TENTE Approach

80

4.4 Traceability information gathering

The code generation steps described in previous sections generates traceability

information that should be stored in a repository in order to maintain the links between

the different artifacts of software development process. These links are useful for

traceability tasks such as change impact analysis, orphan analysis or trace visualization

(Anquetil et al, 2009).

As already commented, the model-to-text transformations explained in the previous

sections are implemented in xPand, the model-to-text transformation language of

openArchitectureWare. xPand is a template-based language. Traceability information is

collected superimposing aspectual templates (that play the role of aspects) on the

templates that implement the code generation steps of the TENTE approach. This

traceability information is stored in ATF (AMPLE Traceability Repository) (AMPLE

D4.1, 200, Anquetil et al, 2008), a traceability repository and framework, created in the

context of the AMPLE project. Aspectual templates generate an XML file with the

traceability information. This XML file is then processed by a special plug-in added to

the ATF
5
.

For each trace link between a source element of the architectural model and an

implementation artifact, a new trace link is added to the XML file collecting traceability

information. Each trace line contains the following information:

1. The metatype of the source artifact.

2. The qualified name, i.e. the complete name, including the path until the element,

of the architectural artifact.

3. The kind of element of the CaesarJ language, e.g. a class or an attribute, which

the target artifact is.

4. The full path to the file where the target artifact is placed.

5. The name of the target element.

5
 ATF only supports the input of traceability data through special Eclipse plugins called extractors. We

have developed our own extractor for the TENTE approach.

 CHAPTER 4: The TENTE Approach

 81

Figure 4-31 Gathering traceability information with aspectual templates

Figure 4-31 shows one of the aspectual templates for collecting traceability

information. This aspectual template intercepts the execution of a common template and

adds some behavior before and after the intercepted template execution. The execution

of the intercepted template execution can even be skipped.

Specifically, the aspectual template depicted in Figure 4-31 intercepts the execution

of the template for transforming architectural components into second-order family

classes (line 00). This aspectual template, firstly, invokes the intercepted template as a

result of executing the proceed action (line 01). Then, traceability information is

collected (line 02) and stored in the corresponding XML file, using some helper

functions (e.g. writeTraceabilityFile).

The use of aspectual templates allows the separation of the logic for gathering

traceability information from the logic for transforming architectural models into

implementation artifacts, avoiding the tangling and scattering of both ones. Thus, it is

possible to modify the logic for gathering traceability information without updating the

logic for code generation.

00 «AROUND ComponentTemplate::componentTemplate FOR uml::Component»

01 «targetDef.proceed()»

02 «LET this.getNearestPackage().nestingPackage.name AS packageName»

03 «writeTraceabilityFile("Component",name,

 "Model."+packageName+".ComponentView."+name,

 "Component Virtual Class",name,""+packageName+"/"+name+".java")»

05 «ENDLET»

06 «ENDAROUND»

82

 83

CHAPTER 5: Related Work

This section comments on related work related to the topic of this master thesis.

First, there are several commercial tools, such as pure::variants (Beuche, 2003) or

Gears (Krueger, 2007), which target the automation of SPL product derivation

processes. However, they focus on the implementation level, deriving code for a

specific product from family or reference implementations. The architectural stage is

not considered. These tools would need to be significantly extended for dealing with

architectural models. These extensions would be not trivial as they are often based on

XMI-based manipulations. Moreover, these tools could not be used for creating model

transformations from architecture to implementation.

Ziadi and Jézéquel, (Ziadi and Jézéquel, 2006) and Czarnecki and Antkiewicz

(Czarnecki and Antkiewicz, 2005) address the automation, by means of model

transformations, of the derivation of architectural/detailed design models for specific

products from models that represent the complete family of products. However, these

works do not deal with the transformation of these models into an implementation and

the separation of coarse-grained variants for facilitating variability management.

Laguna et al (Laguna et al, 2007) present a seamlessly process for SPL engineering

where variants are separated in UML packages combined by merge operators at the

architectural level. These UML packages are managed at the implementation level as

separated projects, where classes are implemented as partial C# classes. Laguna et al

(Laguna et al, 2007) use UML packages and UML merge as the unique mechanism for

dealing with variability. We support, by using VML (Loughran et al, 2008), other

variability mechanisms, such as selecting between different implementations of an

interface.

Trujillo et al (Trujillo et al, 2007) presents a MDD process for portlet development.

A portlet is a third-party component for the development of web applications. Trujillo et

al creates a set of model transformations for automating the development of portlets.

Similarly to us, Trujillo et al also generate the implementation skeletons of the portlet

models. These skeletons are manually completed, adding the business logic to

 CHAPTER 5: Related Work

84

the implementation of the methods. This MDD process is extended for the development

of family or SPLs of portlets. Variable features or variants of a portlet are separated

from the core part of the portlet. A portlet is mainly specified by XML documents.

Variants are specified as refinements, or separate XML documents, which are later

composed by xak, a tool for XML artifacts refinement and composition (Trujillo et al,

2006). Trujillo et al applies the previously developed model transformations to the

variant, obtaining the transformation of the variant transformed for each modeling level.

In order to synthesize a product, the lowest level expression of the selected variants is

combined with the core. Thus, composition is carried out at the implementation level.

Trujillo et al argue the same result should be obtained if variants were composed with

the core at any modeling level, and then the result transformed into an implementation.

This equation creates a mechanism for validating both models as model

transformations. If two applications obtained after composing variants at different

modeling levels are different, something is not right either in the constructed models or

in the developed model transformations. Our approach is similar to the work of Trujillo

et al, but not focused on web engineering. We use UML 2.0, a general purpose

modeling language, which is supposed to cover a wider range of applications.

Our approach, compared to the work of Laguna et al (Laguna et al, 2007) and

Trujillo et al (Trujillo et al, 2007), benefits of a more powerful type system provided by

CaesarJ, which eases the management of dependencies between features, support direct

feature instantiation and the polymorphic use of features, among other issues (Aracic et

al 2006, Mezini and Ostermann, 2004).

 85

CHAPTER 6: Conclusions and Future

Work

This section summarizes this work, provides a critical discussion on the TENTE

benefits and comments on future work.

6.1 Discussion

This master thesis has presented TENTE, a Feature-Oriented Model-Driven process

for architectural design and implementation of Software Product Lines. After the

introduction, Chapter 2 provided some background on the techniques, tools and

technologies used throughout this work. Then, an analysis of different Aspect-Oriented

and model-driven development mechanism for variability management is presented.

Based on the results of this analysis, we defined TENTE, which was described in

Chapter 4. Chapter 5 commented on related work. The main contributions of TENTE,

as compared to state-of-art of Software Product Line engineering are discussed below.

Separation of coarse-grained variants at architectural design and implementation

Coarse-grained variants are separated both at the architectural and at the

implementation levels. At the architectural level UML packages combined by means of

merge relationships are used. At the implementation level, family classes plus mixin

compositions are applied. The separation of variants is therefore kept through the

architectural and implementation stages.

This Feature-Oriented decomposition allows an incremental development of the

reference architecture and implementation. New features can be added on an existing

architecture or implementation by simply adding a new package or family class and

relating it with previously existing packages or family classes.

CHAPTER 6: Conclusions and Future Work

86

The encapsulation of coarse-grained variants in well-defined modularization units

eases variability management. For instance, the selection a coarse-grained feature, such

as LightManagement results on simple operation on the architectural model, such as the

addition of a merge relationship between packages. Without this decomposition, we

would need to add/remove all the components, and their relationships, related to

LightManagement as a consequence of selecting this feature.

Moreover, this encapsulation also helps to make the dependencies between features

more explicit, with ease dependency management. For instance, the selection of the

WindowManagement and the HeaterManagement features as a consequence of the

SmartEnergetControl feature in the SmartEnergyControl in the SmartHome case

study is automatically enforced by the semantics of the merge relationships and the

inheritance between family classes.

Thus, the encapsulation of the coarse-grained variants in packages and family classes

contributes to a better modularization, and therefore, to a better evolution and

maintenance.

Support for negative and positive variability

TENTE is able to deal with positive and negative variability at the same time. For

positive variability, TENTE uses mainly uses UML packages and merge relationships at

the modeling level. Features that cannot be adequately separated using UML packages

and merge relationships are managed by the VML language (Loughran et al, 2008;

Sánchez et al, 2008). VML is able to add, remove or modify fine-grained elements of

domain engineering models.

Explicit models at domain engineering level

Models are used both at the domain and engineering level, contrarily to processes

such as presented by Völter and Groher (Völter and Groher, 2007), where models are

considered only at the application engineering level. This approach encodes most

architecture information implicitly in a set of model transformations. Thus, software

engineers need to extract information about the reference software architecture and

implementation from the model transformation or code generation templates, which can

 CHAPTER 6: Conclusions and Future Work

 87

be a cumbersome task, in case software architects are not Model-Driven experts, which

is the common case.

In TENTE, the reference architecture is an explicit model at the domain engineering

level. This model represents the architecture of the family of products covered by the

Software Product Line. The existence of this reference architecture enables tasks such

as architectural reasoning, architecture assessment and evaluation. This task can be

hardly made in the case of the approach proposed by Völter and Groher (Völter and

Groher, 2007). The same argumentation can is applied to the reference implementation

existing at the implementation level.

Automation of repetitive and error-prone tasks

Several parts of the process are automated by means of model transformations. The

application engineering level and product derivation processes are fully automated.

Furthermore, we also address the automation of part of the domain engineering level.

The transformation process at the domain engineering level automates the generation

of implementation skeletons corresponding to an architectural design. This automation

helps to save some development effort, since this generation process does not need to be

performed manually. Using model transformations at the domain engineering level a

30%-70% of the implementation code of the Smart Home components was

automatically generated. These model transformations also avoid unavoidable mistakes

that might be introduced in a manual process. It also helps to ensure consistency

because all architectural elements are transformed in the same way, following the same

rules. Since these rules are interpreted by a computer, they cannot be misunderstood, as

it might happen with traditional mapping processes, described textually through a set of

tables and textual rules, which can be misinterpret by human actors. Moreover, since it

is supposed these rules implements the best solution for transforming architectural

elements into an implementation, this automation also helps to ensure quality.

TENTE automates completely application engineering, i.e. the development of

specific products. For starting this process, no knowledge about modeling techniques,

UML or even programming is required. It is enough with knowing how to create

configurations. This process can be highly simplified by means of creating the proper

user interfaces. This means no specialized professionals are required to generate final

products of a SPL developed using TENTE.

CHAPTER 6: Conclusions and Future Work

88

No expertise on Model-Driven tools or languages is required

Code generators are domain-independent, being reusable for multiple Software

Product Lines, contrarily to other approaches, such as Völter and Groher (Völter and

Groher, 2007). Indeed, these code generators have been successfully applied to the

development of the Sales Scenario Software Product Line, a case study provided by

SAP in the context of the AMPLE project.

The reusability of the code generators, plus the use of VML for specifying product

derivation processes at the architectural level, avoids software architects and developers

need to learn general purpose transformation languages, such as xTend. Thus, software

architects and developers can benefit from the automation provided by model

transformation techniques at a low cost.

Therefore, neither a new metamodel nor a model transformations must be created for

developing a new Software Product Line using the TENTE approach. Nevertheless, no

knowledge about Model-Driven languages, such as model transformation languages or

code generation templates, is required from software architects and product line

engineers.

As counterpart, the domain-independence of the TENTE code generators make them

not as optimal as code generators developed specifically for a certain Software Product

Line or domain, where the knowledge about the domain can help to implement some

code optimizations in the code generation templates.

Traceability information gathering and adaptability

Code generators of the TENTE approach collects traceability information for being

stored in a traceability repository. Gathering of traceability information is made by

means of aspectual templates. This separation enables the logic for traceability

information gathering can be updated without modifying the templates for code

generation. Aspectual templates intercept templates for code generation based on some

kind of signatures. Due to this syntactical coupling between aspectual templates and

templates for code generation, small changes in the templates for code generation might

leave the aspectual templates obsolete. Thus, small changes in the base templates could

lead to undesirable ripple effects in the aspectual templates.

 CHAPTER 6: Conclusions and Future Work

 89

Usability and industrial applicability

TENTE uses UML as modeling. UML is a standard with a noticeable industrial

adoption and well-known by software designers. There is a wide range of mature tools

available in the market to create and manage UML models. Many of them are currently

used in industrial environments (e.g. IBM Rational or Telelogic TAU G2 (Baker et al,

2005). For feature modeling, there is also a number enough of available tools, such as

pure::variants or fmp (Czarnecki et al, 2005b).

For VML specifications, the corresponding tools are provided by the AMPLE project

(Sánchez et al, 2008). These tools comprise the VML editor and the VML compiler.

These tools have been successfully applied to the SmartHome and Sales Scenario case

studies, provided by SAP and Siemens respectively.

CaesarJ is an innovative language, which supports family classes and mixin

composition. Nevertheless, the compiler generates plain Java code as output. This

means the products developed using TENTE and CaesarJ can be run in any computer

with the Java Virtual Machine installed on it. Since Java is one of the most spread

languages nowadays, and the generated code made no use of the most complex parts of

the Java API, the code can run either in a standard computer as well as a mobile or an

embedded device.

On the other hand, the CaesarJ compiles needs to introduce some extra code in the

result of the compilation. This extra code might result in certain overhead sometimes,

which decreases performance. Moreover, this current extra code is not compatible with

technologies such as J2EE or Java Beans. CaesarJ also presents some shortcomings

related to the remote deployment of components, although a promising Caesar RMI

compiler already exists.

Applicability

We have selected cardinality-based feature models (Czarnecki et al, 2005) for

specifying variability in the problem space. This notation is easy to understand, concise

and allows the creation of tools to simplify the selection between variants for any kind

of SPLs. Nevertheless, feature modeling has a wide number of detractors, which argues

not all kind of variability can be captured in feature models and consider arbitrary

metamodels and DSLs as a more suitable alternative. However, we have not found any

CHAPTER 6: Conclusions and Future Work

90

case during the development of the Smart Home and the Sales Scenario case studies that

demonstrate that feature models are not able to capture some kind of variability.

The TENTE approach is currently tailored to UML as architectural design language.

This means that expressivity of TENTE for architectural design is tailored to

expressivity of UML for architectural design. If the reference architecture of a SPL can

be successfully modeled using UML 2.0, the TENTE approach will work well,

otherwise, it will fail. Certain specialized Software Product Lines, such as embedded

systems with hard real-time constraints, might have difficulties related to expressiveness

of the UML.

The TENTE approach imposes some constraints about how architectural models

must be designed, which must be followed by software architects designing the software

architecture. For example components are compulsory connected through ports. These

ports have to be modeled as classes inside the components. Other restriction is that two

ports cannot be connected two times through different interfaces because this creates

conflicts in the code generation.

Finally, we would like to point out that the transformation rules described in this

work, and used by the TENTE approach, are independent of the CaesarJ language. They

can also be used to implement code generators for other programming languages. The

unique requirement is that the target must support family classes plus mixin

composition. A language with these characteristics is, for instance, ObjectTeams

(Heerman, 2002). Nevertheless, there are not too much languages of this kind currently

available.

6.2 Evaluation

Using the TENTE approach, a Smart Home SPL case study, provided by Siemens in

the context of the AMPLE project, has been fully developed, including: the architectural

design; (2) the generation of the code skeletons for the reference implementation; (3)

the manual implementation of the logic of the components for the reference

implementation; (4) the creation of configuration models for three different products;

(5) the derivation the specific software architectures for these three products; (6) the

generation of the complete implementation of these specific products; and (7) the testing

of the three generated products.

 CHAPTER 6: Conclusions and Future Work

 91

Then, TENTE was applied to the Sales Scenario case study, provided by SAP in the

context of the AMPLE project. The main purpose of the Sales Scenario is the holistic

management of business data related to Sales processes, including central storage and

access controlled retrieval. A full description of the case study can be found in

Morganho et al (AMPLE D5.2, 2007).

For the Sales Scenario case study, the manual implementation of the logic for the

reference implementation was skipped, since this would only serve to demonstrate we

have skills enough about Java programming, but nothing interesting about TENTE. The

architectural design, the generation of the component skeletons, the derivation of

software architectures for specific products and the generation of implementation code

for specific products was enough to test that TENTE could be successfully applied to

different SPLs. For the Sales Scenario, a feature model, an UML 2.0 reference

architecture, a VML specification and several configurations were created. The code

generators required being updated only for fixing minor bugs, not detected in the Smart

Home case study. So, these code generators were successfully applied to a domain

different from the SmartHome.

Nevertheless, during the development of the Sales Scenario case study, we found that

the extension of the TENTE code generator might be a desirable in order to consider

new elements of the UML metamodel that were not used for the Smart Home case

study, such as import relationships between packages. These relationships enables that a

package can use the contents of the other package, but without extending them, as it

would happen with the merge relationship. The semantics of the merge relationships

include implicitly an import, but in the case of the merge, we can not avoid designers

extend a model element from the merged package unintentionally. This can be

prevented by means of using import relationships.

CHAPTER 6: Conclusions and Future Work

92

6.3 Future work

TENTE code generators work currently only with component, class and composite

structure diagrams, but UML offers a wider range of diagrams, which also provide

useful information. It is out intention to add more UML diagrams to the architectural

design and develop the corresponding code generators. We have in our plans to

incorporate state machines for describing protocol state machines, deployment diagrams

and sequence diagrams, which would serve to specify test cases and they will be

transformed into JUnit code. The code generator for deployment diagrams will make

use of the CaesarJ RMI compiler, as the new features related to remote deployment that

might emerge in the near future.

At the current moment, traceability information is simply generated, but not used at

all. Moreover, the information generated is very trivial. It is our intention to investigate

as future work what kind of information must be generated for more interesting

purposes than for the sake of generating trace information, such as, for instance,

estimating the cost of a design change. We would also like to add features to the

TENTE approach, such as highlight regions of code that correspond to a certain model

element, which should be easily implementable using the right traceability information.

We would also like to integrate requirements engineering techniques for Software

Product Line engineering, in order to cover all the stages of the software lifecycle. This

work is currently being done in the context of the AMPLE project.

The creation of configuration models from feature models can be simplified if the

end-user is assisted with the appropriate user interfaces. These user interfaces can vary

from simple forms or wizards to very complex graphical user interfaces, such as a

graphical tool for designing house layouts. It is our intention to investigate how part of

these tools can be more easily developed with the help of Model-Driven techniques.

The template code generation language used for the development of the TENTE

approach is xPand, the model-to-text transformation language of the

openArchitectureWare model-driven suite. Nevertheless, we have found xPand, and

openArchitectureWare, few usable, with important shortcomings, such as code

regeneration, preservation of manually introduced code, protected regions and

 CHAPTER 6: Conclusions and Future Work

 93

important and recurrent bugs when applied to the UML metamodel
6
, and a serious lack

of readable documentation. These shortcomings make almost impossible round-trip

engineering, which hampers scalability, maintenance and evolution. The selection of

xPand was mainly due to business alliances of the AMPLE project, rather than sound

technical reasons. Therefore, we would also like to reimplement the code generators in a

more robust code generation language, such as MOFScript (Oldevik et al, 2005).

6
 For instance, setter functions related to attributes of UML metaclasses does often not work. The “name”

property and its associated “setName” function is a clear exemplar of this bug.

94

 95

References

(Alférez et al, 2008)

M. Alferez, U. Kulesza, A. Sousa, J. Santos, A. Moreira, J. Araujo, V. Amaral, “A

Model-Driven Approach for Software Product Lines Requirements Engineering", Proc.

of the 20th Int. Conference on Software Engineering and Knowledge Engineering

(SEKE), Redwood City (San Francisco Bay, USA), July 2008.

(AMPLE D2.2, 2007)

P. Sánchez, N. Gámez, L. Fuentes, N. Loughran and Alessandro Garcia. “A Metamodel

for Designing Software Architectures of Aspect-Oriented Software Product Lines”.

AMPLE Project Deliverable D2.2, September 2007.

(AMPLE D2.4, 2008)

C. Nebrera, P. Sánchez, L. Fuentes, C. Schwanninger, L. Fiege, M.Jäger. “Description

of model transformations from architecture to design”.AMPLE Project Deliverable

D2.2, September 2008.

(AMPLE D3.1, 2007)

V. Gasiunas, P. Sánchez, C. Nebrera, N. Gámez, L. Fuentes, J. Noyé, M. Südholdt, A.

Núñez, C. Pohl, A. Rummler, I. Groher, C. Schwanninger and M. Völter. “Overview of

Extensions/Improvements to Existing Implementation Technologies”. AMPLE Project

Deliverable D3.1, December 2007.

(AMPLE D3.2, 2007)

C. Nebrera, P. Sánchez, N. Gámez, L. Fuentes. “Evaluation of existing AOP and MDD

technologies as compared to other implementation technologies for variability

management with respect to the requirements of SPLs”. AMPLE Project Deliverable

D3.2, December 2007.

References

96

(AMPLE D4.1, 2008)

I. Galvão, S. Shakil Khan, J. Noppen, J.C. Royer, A. Rummler, P. Sánchez, R.

Mitschke, N. Anquetil, B. Grammel, H. Morganho, C. Pohl, C. Schwanninger, L.

Fuentes, A. Rashid and A. Garcia. “Definition of a traceability framework (including

the metamodel and the modelling of processes and artefacts to allow traceability in the

presence of uncertainty) for SPLs”. AMPLE Project Deliverable D4.1, December 2007.

(AMPLE D5.2, 2008)

H. Morganho, C.Gomes, J. P.Pimentão, R. Ribeiro, B. Grammel, C. Pohl, A. Rummler,

C. Schwanninger, L Fiege, M. Jaeger. “Requirement specifications for industrial case

studies” AMPLE Project Deliverable D5.1, March 2008.

(Anquetil et al, 2009)

N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. C. Royer, A. Rummler, A. Sousa.

“A Model-Driven Traceability Framework for Software Product Lines”. Journal on

Software and Systems Modeling (SoSym). Accepted for publication.

(Aracic et al. 2006)

I. Aracic, V. Gasiunas, M., Mezini and K. Ostermann. “An Overview of CaesarJ”.

Transactions on Aspect-Oriented Software Development, A. Rashid and M. Aksit (Eds),

LNCS 3880:135-173, February 2006.

(Baker et al, 2005)

P. Baker, S. Loh and F. Weil. “Model-Driven Engineering in a Large Industrial Context

- Motorola Case Study”. Proc. of the 8
th

 Int. Conference on Model Driven Engineering

Languages and Systems (MoDELS), L. C. Briand and C. Williams (Eds.), LNCS 3713:

476-491, Montego Bay (Jamaica), October 2005.

(Bayer et al, 2006)

J. Bayer, S. Gerard, Ø. Haugen, J. Mansell, B. Møller-Pendersen, J. Oldevik, P. Tessier,

J. P. Thibault and T. Widen. “Consolidated Product Line Variability Modelling”. In: T.

Käkölä and J. C. Dueñas (Eds). Software Product Lines: Research Issues in Engineering

and Management: 195-241. Springer, October 2006.

 References

 97

(Beuche, 2003)

D. Beuche. “Variant management with pure::variants”. Technical report, pure-systems

GmbH, 2003.

(Beydeda et al, 2005)

S. Beydeda, M. Book and V. Gruhn, “Model-driven software development”, Springer,

September 2005

(Budinsky et al, 2003)

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. “Eclipse Modeling

Framework”, Addison-Wesley, July 2003.

(Czarnecki et al, 2005)

K. Czarnecki , S. Helsen and U. W. Eisenecker. “Staged Configuration through

Specialization and Multilevel Configuration of Feature Models”. Software Process:

Improvement and Practice 10(2):143-169, January-March 2005.

(Czarnecki et al, 2005b)

K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, K. Pietroszek. “fmp and fmp2rsm:

Eclipse plug-ins for Modeling Features using Model Templates”. Proc. of the

Companion to the 20
th

 Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA): 200-201, San Francisco (California, USA),

October 2005.

(Deelstra et al, 2006)

S. Deelstra, M. Sinnema and J. Bosch. “Product Derivation in Software Product

Families: a Case Study”. Journal of Systems and Software 74(2): 173-194, January

2005.

(Gamma et all, 1995)

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). “Design Patterns -

Elements of Reusable Object-Oriented Software.” Addison-Wesley.

References

98

(Gasiunas and Aracic, 2007)

Vaidas Gasiunas and Ivica Aracic. “Dungeon: A Case Study of Feature-Oriented

Programming with Virtual Classes”. 2nd Workshop on Aspect-Oriented Product Line

Engineering (AOPLE), 6
th

 Int. Conference on Generative Programming and Component

Engineering (GPCE), Salzburg (Austria), October 2007.

(Groher and Völter, 2007)

I. Groher and M. Völter. “XWeave: Models and Aspects in Concert”. Proc. of the 10
th

Int. Workshop on Aspect-Oriented Modeling (AOM), 6
th

 Int. Conference on Aspect-

Oriented Software Development (AOSD), Vancouver (British Columbia, Canada),

March 2007.

(Ernst, 1999)

E. Ernst. “gbeta - A Language with Virtual attributes, Block Structure, and

Propagating, Dynamic Inheritance”. PhD thesis, Department of Computer Science,

University of Aarhus, Denmark, 1999.

(Fuentes and Sánchez, 2005)

L. Fuentes and P. Sánchez. “AO Approaches for Component Adaptation”. Proc. of the

2nd Workshop on Coordination and Adaption Techniques (WCAT), 19th European

Conference on Object Oriented Programming (ECOOP), 79-86, Glasgow (Scotland),

July 2005.

(Fuentes and Sánchez, 2007)

Lidia Fuentes and Pablo Sánchez. "Aspect-Oriented Coordination". Proc. of the 3rd Int.

Workshop on Coordination and Adaption Techniques for Software Entities (WCAT),

Electronic Notes in Theoretical Computer Science (ENTCS) 189:87-103, July 2007.

Elsevier.

(Fuentes et al, 2009)

L. Fuentes, N. Gámez and P. Sánchez. "Managing Variability of Ambient Intelligence

Middleware". Int. Journal of Ambient Computing and Intelligence (IJACI). 1(1):64-74,

January-March 2009.

 References

 99

(Haugen et al, 2005)

O. Haugen, B. Moller-Pedersen and J. Oldevik. “Comparison of System Family

Modeling Approaches”. Proc. of the 9th Int. Software Product Line Conference (SPLC):

J. H. Obbink and K. Pohl (Eds.): LNCS 3714:102-112, Rennes (France), September

2005.

(Hallsteinsen et al, 2006)

S. Hallsteinsen , G. Schouten, G. Jan Boot, T. Erlen. “Dealing with Architectural

Variation in Product Populations”, In: T. Käkölä, , J. C. Dueñas. Software Product

Lines: Research Issues in Engineering and Management:245-273, Springer, October

2006.

(Herrman, 2002)

S. Herrmann. “Object Teams: Improving Modularity for Crosscutting Collaborations”.

Revised Papers of the 3rd Int. Conference NetObjectDays (NODe), M. Aksit, M.

Mezini and R. Unland (Eds), LNCS 2591:248-264, Erfurt (Germany), October 2002.

(Kaköla and Dueñas, 2006)

T. Kakola and J. C. Dueñas. “Software Product Lines: Research Issues in Engineering

and Management”. Springer-Verlag Berlin, 2006

(Kiczales et al, 1997)

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, .J.M. Loingtier, J.

Irwin. “Aspect-Oriented Programming”. Proc. of the 11
th

 European Conference on

Object-Oriented Programming (ECOOP), M. Aksit and S. Matsuoka (Eds.), LNCS

1241: 220-242, Jyväskylä (Finland), June 1993.

(Kiczales et al, 2001)

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold. “An

Overview of AspectJ”. Proc. of the 15
th

 European Conference on Object-Oriented

Programming (ECOOP), J. L. Knudsen (Ed.), LNCS 2072:327-353, Budapest

(Hungary), June 2001.

References

100

(Krueger, 2007)

C. W. Krueger. “Biglever Software Gears and the 3-tiered SPL Methodology”. Proc. of

the Companion to the 22
nd

 Int. Conference on Object-Oriented Programming Systems

and Applications (OOPSLA): 844–845, Montreal, (Quebec, Canada), October 2007.

(Laguna et al, 2007)

M. A. Laguna “Seamless Development of Software Product Lines”. Proc. of the 6th Int.

Conference on Generative Programming and Component Engineering (GPCE): 85-94,

Salzburg (Austria), October 2007.

(Loughran et al, 2008)

N. Loughran, P. Sánchez, A. Garcia and L. Fuentes. “Language Support for Managing

Variability in Architectural Models” Proc. of the 7
th

 Int. Symposium on Software

Composition (SC), C. Pautasso and É. Tanter (Eds), LNCS 4954:36-51, Budapest

(Hungary), April 2008.

(Madsen and Moller, 1989)

O. L. Madsen and B. Moller-Pedersen. “Virtual classes: A powerful mechanism in

object-oriented programming”. Proc. of the 4
th

 Int. Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA):397–406, New

Orleans, (Louisiana, USA), October 1989.

(Meyer, 2001)

B. Meyer, “Concurrent Object-Oriented Programming”, Proc. of the 38
th

 International

Conference on Technology of Object-Oriented Languages and Systems (TOOLS): 203,

Zurich (Switzerland), March 2001.

(Mezini and Ostermann, 2004)

M. Mezini and K. Ostermann. “Variability management with feature-oriented

programming and aspects”, Proc. of the 12
th

 Int. Symposium on Foundations of

Software Engineering (FSE):127-136, Newport Beach (California, USA), October-

November 2004.

 References

 101

(Noopen et al, 2009)

J. Noppen, P. van den Broek, N. Weston, A. Rashid. “Modelling Imperfect Product

Line Requirements with Fuzzy Feature Diagrams”. Proc. of the 3
rd

 Int. Workshop on

Variability Modeling of Software-Intensive Systems (VaMOS): 93-102, Seville (Spain),

January 2009.

(Oldevik et al, 2005)

J. Oldevik, T. Neple, R., Grønmo, J. Ø, Aagedal and A. J. Berre. “Toward Standardised

Model to Text Transformations”. Proc. of the 1
st
 European Conference on Model Driven

Architecture (ECMDA), A. Hartman and D. Kreische (Eds), LNCS: 3748: 239-253,

Nuremberg (Germany), November 2005.

(Pastor and Molina, 2007)

O. Pastor and J. C. Molina. “Model-driven Architecture in Practice: A Software Pro-

duction Environment Based on Conceptual Modeling”. Springer, July 2007.

(Pohl et al, 2005)

K. Pohl, G. Böckle and F. van der Linden, “Software Product Line Engineering -

Foundations, Principles, and Techniques”, Springer, September 2005.

(Prehofer, 2001)

C. Prehofer. “Feature-Oriented Programming: A NewWay of Object Composition”.

Concurrency and Computation: Practice and Experience 13(6): 465-501, May 2001.

(Rabiser et al, 2007)

R. Rabiser, P. Grünbacher and D., Dhungana. “Supporting Product Derivation by

Adapting and Augmenting Variability Models”. In Proc. of the 11
th

 Int. Conference on

Software Product Lines (SPLC): 141-150, Kyoto (Japan), September 2007.

(Sánchez et al, 2007)

P. Sánchez, L. Fuentes, A. Jackson and S. Clarke. “Aspects at the right time”.

Transactions on Aspect-Oriented Software Development IV (TAOSD), Special issue on

Early Aspects, Awais Rashid, Mehmet Aksit, João Araújo and Elissa Banassiad (Eds),

LNCS 4640:54–113, November 2007.

References

102

(Sánchez et al, 2008)

P. Sánchez, N. Loughran, L. Fuentes and A. Garcia. “Engineering Languages for

Specifying Product-derivation Processes in Software Product Lines” Proc. of the 1
st

Int. Conference on Software Language Engineering (SLE), D. Gašević , R. Lämmel,

and E. Van Wyk (Eds). LNCS 5452: 188-297 Toulouse (France), September 2008.

(Santos et al, 2008)

A. L. Santos, K. Koskimies and A. Lopes. “Automated Domain-Specific Modelling

Languages for Generating Framework-Based Applications”. Proc. of the 12
th

 Int.

Software Product Line Conference (SPLC): 149-158, Limerick (Ireland), October 2008.

(Stephan and Antkiewicz, 2008)

M. Stephan and M. Antkiewicz. “Ecore.fmp: A tool for editing and instantiating class

models as feature models”. ECE, University of Waterloo, Technical Report #2008-08,

May 2008.

(Trujillo et al, 2007)

S. Trujillo, D. Batory and O. Díaz. “Feature-Oriented Model Driven Development: A

Case Study for Portlets”. Proc. of the 29th Int. Conference on Software Engineering

(ICSE): 44-53, Minneapolis, (Minnesota, USA), May 2007

(UML, 2005)

Object Management Group (OMG), “Unified Modeling Language: Superstructure

version 2.0 (formal/05-07-04)”, August 2005.

(Völter and Groher, 2007)

M. Völter and I. Groher. “Product Line Implementation using Aspect-Oriented and

Model-Driven Software Development”. Proc. of the 11
th

 Int. Software Product Line

Conference (SPLC): 233-242, Kyoto (Japan), September 2007.

(Ziadi and Jézéquel, 2006)

T. Ziadi and J. M. Jézéquel. “Software Product Line Engineering with the UML:

Deriving Products”. In: T. Käkölä, , J. C. Dueñas. Software Product Lines: Research

Issues in Engineering and Management, 557-588, Springer, October 2006.

 103

APENDIX A. TENTE Plug-in User

Manual

This first appendix explains the basic concepts to start using TENTE. Firstly, how to

install and uninstall the TENTE Eclipse Plug-in is commented. Then, how to generate

code skeletons is described. Finally, how to generate complete products at application

engineering level is explained. The models of the Smart Home Case Study will be used

in the examples.

A.1 Install and Uninstall the TENTE Eclipse plug-in

The TENTE code generators are provided as en Eclipse plug-in. Therefore, the first step

to use is to get an Eclipse installation. Eclipse can be downloaded the program from the

web page http://www.eclipse.org/downloads/. After downloading it, uncompress it

inside the desired folder. Eclipse version 3.4 or higher is required. Moreover, the

following plug-ins must also be installed in Eclipse:

 OpenArchitectureWare 4.3 or higher, which can be obtained from

http://www.openarchitectureware.org.

 CaesarJ and the CaesarJ development tools, which can be downloaded from

http://caesarj.org

Installation

1) Once Eclipse has been installed, go to Help -> Software Updates

http://www.eclipse.org/downloads/

APENDIX A. TENTE Plug-in User Manual

104

2) Click in Available Software-> Add Site

3) Write in location http://caosd.lcc.uma.es/tente/TenteUpdateSite and press OK

 APENDIX A. TENTE Plug-in User Manual

 105

4) Select TenteFeature and press Install

A.2 Uninstallation

1) Open Eclipse, go to Help -> Software Updates

APENDIX A. TENTE Plug-in User Manual

106

2) Click in the InstalledSoftware, search for TenteFeature and press Uninstall

A.3 Updating

1) Open Eclipse, go to Help -> Software Updates

 APENDIX A. TENTE Plug-in User Manual

 107

2) Click in the InstalledSoftware, search for TenteFeature and press Update.

A.4 Generation of Code Skeletons

Creating the Family Model.

In order to generate code skeletons, the first step is to create a reference architecture.

There are several tools that work with UML models like MagicDraw,

EnterpriseArchitecture or even Eclipse. Any UML tool been able to work with

component diagrams and able to export models to XMI version of the UML2 tools can

be used for this purpose.

Generating code outside the Eclipse workbench.

The TENTE plug-in allows code generation using a model file that is outside the eclipse

workbench. When the code is generated using this option, it is also possible to select the

directory in which the code will be generated. We describe the steps for performing this

task:

APENDIX A. TENTE Plug-in User Manual

108

1. Press the SG black button in the eclipse tool bar.

2. Select the model file inside the file system and press Open.

 APENDIX A. TENTE Plug-in User Manual

 109

3. Select the output folder for the generated code. Inside this folder, a folder called scr-

skeleton-gen will be created. The generated code will be placed in this latter folder.

4. Once the output folder has been selected, the plug-in will ask if we want to generate

traceability information. If so, a new folder called scr-skeleton-trace will be created.

The traceability information is stored as a XML file inside this folder.

Generating code inside the workbench.

TENTE also allows the code generation directly from a model that is contained in the

Eclipse workbench. In this case, the code is generated inside the same directory in

which the model is stored. We describe the steps for performing this task:

1. The first step is to select the model file and right click in order to show the context

menu. Select TENTE code generation -> Generate Family of Products Skeleton.

APENDIX A. TENTE Plug-in User Manual

110

2. We are asked if we want to generate traceability information. If so, a folder scr-

skeleton-trace for the storing the XML traceability file is created. A new folder

called scr-skeleton-gen is created for the code skeletons. Both directories are created

in the same project where the model is stored.

 APENDIX A. TENTE Plug-in User Manual

 111

A.5 Code Generation of Specific Products

Creating the Application Model.

In order to generate a final product, the first step is to obtaining the software

architecture for a specific product. This could be done automatically by selecting the

product features and using VML or it could be done manually by means of creating with

a model tool like MagicDraw, EnterpriseArchitecture or even Eclipse. As in the domain

engineering level, the model must be in the XMI version of the UML2 tool.

Code Generation code outside the Eclipse workbench.

The TENTE plug-in allows code generation using a model file that is outside the

Eclipse workbench. When the code is generated using this option, it is also possible to

select the directory in which the generated code will be placed. We describe the steps

for performing this task:

1. Press the AG black button in the Eclipse tool bar.

APENDIX A. TENTE Plug-in User Manual

112

2. Select the family model file inside the file system and press Open.

3. Select the output folder for the generated code. Inside this folder, a new folder called

scr-application-gen will be created. The generated source code will be placed in this

folder.

 APENDIX A. TENTE Plug-in User Manual

 113

Generating code inside the workbench.

The TENTE plug-in also allows code generation directly from a model that is visible

from the workbench. In this case, the generated code is placed inside the same project in

which the model is stored. We describe the steps for performing this task:

1. Select the model file and right click on the model file to show the context menu. Go

to TENTE code generation->Generate Final Product.

APENDIX A. TENTE Plug-in User Manual

114

2. A new folder called scr-skeleton-gen is created for the final product code. The

directory is created in the same place where the model is stored.

 115

APPENDIX B. Smart Home User

Manual

In the first section of this appendix it will be explained how to generate a new Smart

Home Final Product and how to set the generated product inside the SPL to work with

it. We will also explain how to execute an instance of generated product. In the second

section the visual elements of the SmartHome will be explained. The third section will

explain with more detail the different modules of the product, the logic rules introduced

by each module, and how to interact with them using the GUI.

B.1 Generating and Executing

To generate a Smart Home product we have to follow the steps described in section

A.7. Inside the Eclipse project “ApplicationGeneration” we could found 3 different

Application Models for the SmartHome that are already in UML2 format. Once the

code is generated, go to the folder where we have generated the code, there will be a file

called MyHome.java inside the finalProduct directory. This file is the final family class

that instantiate and interconnect all the components.

The Smart Home SPL can be found in the Eclipse project “SmartHome”. To run a

final product first we have to copy the file MyHome.java that we have generated and

contain the final product information, inside the package MyHome in the project

“SmartHome”. This package contains final products for the SPL. There are other test

final products that were manually generated to test the Smart Home functionality, like

MyHomeHeater.java that corresponds with a Smart Home with only heaters.

APENDIX B. Smart Home User Manual

116

To run a final product we have to do right click over the java file that correspond to

the product and select Run As->Caesar Application. In this case to run the final product

we have generated we have to do right click over MyHouse.java and select Run As->

CaesarJ Application.

 APENDIX B. Smart Home User Manual

 117

B.2 UI Description

Independently of the Smart Home product configuration, two visual windows will be

opened when we run the product. One is called “Device GUI Simulator” and the other

“Smart Home Central GUI”.

Since there are no physical devices to test the product, a device simulator has been

created. Normally for each component that corresponds to a physical device, a new

element is added to the simulator. The simulated devices communicate directly with the

components, simulating a physical interaction between them and a human. The white

panel situated in the left part shows the floors of the house. Once a floor is selected, the

next panel will show the rooms that we could find inside that floor. Once a room is

selected, the next panel shows the different device types that can be found in the room.

And finally the last panel shows the devices of the selected types that can be found in

the room. Basically it is a way of put some order in the simulator to search for a

concrete device. Once a device is selected, the simulated controls will appear in the

APENDIX B. Smart Home User Manual

118

bottom window. Next figure shows an example using the final product of B.1 step,

when a light controller is selected.

The “Smart Home Central GUI” windows are the real GUI that is shown to the Smart

Home user. Using the GUI the user can interact with the Smart Home. The GUI has

been structured in tabs at different levels. The first level show the general controls that

affect the full house. For example if the house has light control, there is a tab

“LightControl” that allows to modify the state and intensity of all the lights of the house

in the same time when it is selected. Next figure shows this example:

In the first tab level there is a tab called Floors, once it is selected it shows a second

level tab with all the floors of the house. Once a floor is selected a new tab with the

controls for that floor is shown. This tab contains the controls that affect to the whole

floor. For example, if we select the first floor and the WindowControl tab, we can open,

close or change the aperture for all the windows inside that floor. The next figure shows

this example:

 APENDIX B. Smart Home User Manual

 119

If we press the tab called Rooms, it shows the rooms that we could found in the

selected floor. Once a room is selected the controls for that room are shown. This time it

shows the general control for the room, like we saw when a floor was selected and the

general control for the floor appear, and there are also tabs for individual elements. For

instance, if we select the first room of the first floor, we can see the general controls like

LightControl or BlindControl and also the tab that corresponds to individual controls,

like Lights or Blinds. If one of this tabs, like Lights is selected, it shows a tab for each

light inside the room and selecting them we could individually control each light. Next

figure shows this example:

In the next section the different features that can be selected for the Smart Home will

be explained. We will explain also the different visual elements that are added for each

feature and the logic rules of the product.

B.3 Functionality

The Smart Home is divided in different modules, each one of them adds a concrete

functionality. Most of the modules are independent; they don‟t require other modules to

APENDIX B. Smart Home User Manual

120

work. For example, it is possible to configure a house with light management or

window management or none of them. The only module that is not independent is the

smart energy saver module that requires window management and heater management

to work.

In this section we will explain what is added when a module is selected in the GUI,

what new devices can be are controlled and the logic rules for the control of the devices.

1) Light Management

Light Management module allows the control of lights, it doesn‟t require other

modules. It allows switching on and off individual, or groups of lights, and

controlling their intensity individually or by groups. Initially all the lights are

switched off and the intensity is set to 0.

For each controlled light there should be 3 devices in the Device Simulator:

 LightController: Represents the device that controls electrically the light. It

shows the actual state and intensity. The intensity could vary from 0 to 100.

 Switch: Represent the device that allows switching on and off a light manually.

It shows a button to do this operation.

 Dimmer: Represent the device that allows changing the intensity of a light

manually. It shows the actual intensity and a scroll bar to change it.

The next elements are added to the Smart Home GUI when the light management

module is included:

 LightControl tabs: In the general tabs a new tab called LightControl is added.

When it is pressed a panel is shown. This panel allows switching on all the

lights of the house, switching off the lights or modifying their intensity. The

same panel is added to the tabs of each floor and each room, allowing

controlling all the lights inside a floor or a room respectively.

 Lights tabs: In the tabs of each room a new tab called Lights is added. When

this tab is selected, a tab for each light inside the room is shown. This tab opens

a panel allowing individual control of the selected light. A scroll bar allows

changing the intensity and a button to modify the state of the light.

 APENDIX B. Smart Home User Manual

 121

2) Window Management

Window Management module allows the control of windows and blinds, it doesn‟t

require other modules. The aperture of a window or a group of windows can be

selected. The aperture can vary from 0 to 100. This module also controls the aperture

of the blinds of the house with the same rules than the windows. Initially the

windows and blinds are closed; therefore their aperture is set to 0.

For each controlled window there should be 2 devices in the Device Simulator:

 WindowController: Represents the device that controls electrically the window

aperture. It shows the actual aperture of the window.

 WindowDimmer: Represent the device that allows changing the aperture of a

window manually. It shows a scroll bar to perform this operation.

For each controlled blind there should be 2 devices in the Device Simulator:

 BlindController: Represents the device that controls electrically the blind

aperture. It shows the actual aperture of the blind.

 BlindDimmer: Represent the device that allows changing the aperture of a blind

manually. It shows a scroll bar to perform this operation.

The next elements are added to the Smart Home GUI when the window management

module is included:

 WindowControl tabs: In the general tabs a new tab called WindowControl is

added. When it is pressed a panel is shown. This panel allows full opening and

closing on all the windows of the house or modifying their aperture to the

desired value. The same panel is added to the tabs of each floor and each room,

allowing controlling all the windows inside a floor or a room respectively.

 Windows tabs: In the tabs of each room a new tab called Windows is added.

When this tab is selected, a tab for each window inside the room is shown. This

tab opens a panel allowing individual control of the selected window. A scroll

bar allows changing the aperture of the window.

 BlindControl tabs: In the general tabs a new tab called BlindControl is added.

When it is pressed a panel is shown. This panel allows full opening and closing

on all the blinds of the house or modifying their aperture to the desired value.

APENDIX B. Smart Home User Manual

122

The same panel is added to the tabs of each floor and each room, allowing

controlling all the blinds inside a floor or a room respectively.

 Blinds tabs: In the tabs of each room a new tab called Blinds is added. When

this tab is selected, a tab for each blind inside the room is shown. This tab opens

a panel allowing individual control of the selected blind. A scroll bar allows

changing the aperture of the blind.

3) Heater Management

Heater Management module allows temperature control inside the house, it doesn‟t

require other modules. For this purpose thermometers and heaters devices are added.

There could be any number of thermometers in a room. Each thermometer controls

the temperature inside the room in the position it is placed, and the temperature

outside the room in the outside of the house. Like thermometers, any number of

heaters can be placed in a room. The heaters can work in two modes, heating or

cooling and the power of them can be set between 0 and 100. Each heater is related

with a thermometer.

The house user cannot control the heaters directly like it can be done for windows or

lights. The heaters have to be controlled through the Smart Home GUI, selecting the

desired temperature. Initially all the heaters are switched off and theirs temperature

set to 25 degrees in the GUIs. The program will set the power and mode of the heater

depending of the temperature inside the room and the selected temperature for the

heater. The rule is simple, if the heater is on and the temperature selected is lower

than the inside temperature given by the thermometer associated, the heater mode is

set to cooling. In other case is set to heating. For the power the difference of selected

and inside temperature is calculated, a 1% of power is given by each 0.1 degree of

difference. If the difference is bigger than 10 degrees the heater is set to full power.

For each controlled heater there should be a device in the Device Simulator:

 HeaterController: Represents the device that controls electrically the heater

aperture. It shows if the heater is active, if it is cooling or heating and the power

it is set to.

 APENDIX B. Smart Home User Manual

 123

For each controlled thermometer there should be a device in the Device Simulator:

 Thermometer: Represents the device that measures the temperature. Since there

are no real thermometers and in order to do accurate simulations, the panel of

this device allows us to manually modify the external and internal temperature

given by the thermometer. Initially the thermometers are set with an internal

temperature of 25 degrees and an external temperature of 30 degrees.

The next elements are added to the Smart Home GUI when the heater management

module is included:

 HeatingControl tabs: In the general tabs a new tab called HeatingControl is

added. When it is pressed a panel is shown. This panel allows switching on and

off all the heaters of the house or modifying their temperature to the desired

value. The same panel is added to the tabs of each floor and each room,

allowing controlling all the heaters inside a floor or a room respectively.

 Heaters tabs: In the tabs of each room a new tab called Heaters is added. When

this tab is selected, a tab for each heater inside the room is shown. This tab

opens a panel allowing individual control of the selected heater. The power,

state, mode and selected temperature of the heater are shown. It also allows

modifying the temperature or switching on and off the heater.

 Thermometers tabs: In the tabs of each room a new tab called Thermometers is

added. When this tab is selected, a tab for each thermometer inside the room is

shown. This tab opens a panel showing the temperatures given by the

thermometer.

4) Smart Energy Control

This module allows energy saving in the heating system of the house; it requires the

heating management and window management modules. For each room of the house

it is possible to activate or deactivate the smart energy mode. When this mode is

active, the program calculates the average difference between the internal and

external temperature of the room. It also calculates the average selected temperature

in the active heaters. If the selected temperature could be reached by opening the

windows, the windows of the room are opened and the power of the heaters is set to

0 in order to save energy. The calculations are done each time the temperature of a

APENDIX B. Smart Home User Manual

124

thermometer changes, the selected temperature in a heater changes, the state of a

heater is changed or the smart energy saver is switched on in the room.

For each room there should be a device in the Device Simulator:

 SmartControl: It is not really a device, it shown if the smart energy is set on or

off for the selected room. It is added for testing purpose only.

The next elements are added to the Smart Home GUI when the smart energy control

module is included:

 SmartEnergySaver tabs: In the general tabs a new tab called SmartEnergySaver

is added. When it is pressed a panel is shown. This panel allows switching on

and off the energy saver system for all the rooms of the house. The same panel

is added to the tabs of each floor and each room, allowing controlling the save

energy system inside a floor or a room respectively.

