
How MDA Can Help Designing Component- and Aspect-based Applications ∗

Lidia Fuentes, Ḿonica Pinto, and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Ḿalaga, Spain
{lff,pinto,av}@lcc.uma.es

Abstract

Distributed systems are inherently complex, and there-
fore difficult to design and develop. Experience shows that
new technologies—such as components, aspects, and appli-
cation frameworks—can be effectively used for building dis-
tributed applications. However, our experience also shows
that most of the applications built in that way are difficult to
be re-used, documented, and maintained. Probably, one of
the major reasons is the lack of a clear separation between
the concepts used at different levels (application domain,
application architecture, supporting application platform,
programming language, etc.). In this paper we present our
experience with a platform we developed for building dis-
tributed applications using components and aspects. In par-
ticular, we show how many of the (conceptual) problems we
hit when trying to document, re-use, and implement it in
different contexts can be naturally solved with the adoption
of the MDA concepts. In addition, we describe the process
we followed for identifying and separating the entities that
live in different “models” (in the MDA sense), and the re-
quired transformations between them. MDA offers a good
framework for specifying different views of our model, and
mappings to platform-specific profiles. In this way, we are
able to address the particular needs of different stakehold-
ers: from the designer interested in developing new appli-
cations following our (component and aspect-based) mod-
eling approach, to the software vendor that wants to imple-
ment a proprietary version of our supporting middleware
framework in CORBA, EJB or .NET.

1. Introduction

The increasing complexity of large-scale enterprise ap-
plications is driving the Software Engineering community

∗Proceedings of the IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2003), pp. 124-135, Septiembre 2003,
Brisbane, Australia

to design and adopt new technologies for the development
of distributed systems in timely and affordable manners.

Component-based Software Development (CBSD) has
become one of the key technologies for the effective con-
struction of large, complex software systems [12]. CBSD
advocates the use of prefabricated parts, perhaps developed
at different times, by different people, and possibly with
different uses in mind. The goal is the reduction of de-
velopment times, costs, and efforts, while improving the
flexibility, reliability, and maintainability of the final appli-
cation due to the (re)use of software components already
developed and validated. However, everybody agrees that
achieving an accurate functional decomposition of a system
into separate context-independent components is not easy
task.

Aspect Oriented Software Development (AOSD) tries
to add a new dimension to the solution, by encapsulating
the different cross-cutting concerns of an application into
separateaspects, which can then beweaved together to
form a functioning system. Although aspects were origi-
nally defined only at the programming level [5], AOSD tries
to cover all phases of the software development life-cycle,
from requirements to implementation (see http://aosd.net).

Current research tries to combine AOSD and CBSD
techniques, in order to obtain all their mutual benefits.
Thus, aspects may become reusable parts, which can be
weaved among themselves, and then attached to the indi-
vidual software components. Weaving can be either static
(during compilation) or dynamic (at run-time).

So far, most of the efforts from the Software Engineer-
ing community have concentrated on the technical issues of
these new technologies. However, there is a growing inter-
est in the modeling concerns of the software development
process, too. Different approaches are successfully address-
ing the modeling of CBSD applications [1, 2], although the
situation is not so bright when it comes to model software
aspects. Several proposals try to model them using UML,
although current practices show the difficulties to “trans-
late” those UML models into particular aspect-oriented lan-
guages or platforms without losing relevant information.



Figure 1. Original UML profile of the DAOP platform

OMG’s new Model Driven Architecture (MDA) is a
modeling initiative that tries to cover the complete life-cycle
of software systems, allowing the definition of machine-
readable application and data models which permit long-
term flexibility of implementation, integration, mainte-
nance, testability and simulation [6]. In this paper we
will try to show how MDA can be used for model-
ing component- and aspect-based systems in a platform-
independent manner. Moreover, we will also try to show
that MDA may be helpful not only for modeling and design-
ing systems from scratch, but also for helping document and
re-engineer existing systems. Our experience is based on a
middleware platform (the “Dynamic Aspect-Oriented Plat-
form”, DAOP) that we developed for building distributed
applications.

The structure of this paper is a follows. First, Section 2
presents the DAOP platform, its supporting component and
aspect model, and discusses the main (conceptual) problems
that we came across when tried to document the platform
for re-use and evolution. The following three sections de-
scribe how MDA can help addressing these problems, and
how we think that the MDA concepts can be applied to the
more general case of building component- and aspect-based
distributed applications. A running example is used to illus-
trate our proposal. Finally, Section 6 draws some conclu-
sions and outlines some further work.

2. Motivation

2.1. The Dynamic Aspect-Oriented Platform

The Dynamic Aspect-Oriented Platform (DAOP) is a
middleware platform that defines components and aspects
as first-class reusable entities, which can be dynamically
weaved to build the final system. Probably, the most rel-
evant feature of DAOP is the component and aspect inde-
pendence, which means that neither components nor as-
pects have any information on when or how they are com-
posed. This provides a powerful and very flexible mecha-
nism for late binding. The DAOP platform also provides
a set of common services to most distributed applications,
such as message delivery, broadcasting, persistence service,
etc. DAOP has been successfully used for implementing
different kinds of virtual collaborative applications [9].

DAOP was originally documented using UML pro-
files [10], which have been defined as the natural candi-
dates for documenting such kind of frameworks [4, 7]. A
UML profile is a set of extensions to UML using its built-in
extension facilities. A UML profile for a platform or an ap-
plication framework is a standard means for expressing the
semantics of that platform or framework using UML.

Figure 1 shows the core meta-model of the original UML
profile for DAOP. As we can see, DAOP defines two layers,

2



thecomponent-aspect layer—with the components and as-
pects existing at runtime—, and themiddleware layer—in
charge of composing these entities in a dynamic way. The
composition of aspects and components is guided by some
architectural constraints, defined by a set of rules describing
which aspects can be applied to each component, when they
must be applied and in what order, and a list of possible im-
plementation classes. The dynamic composition process is
performed by theLocalEnvironmentSite, using the informa-
tion provided by theEnvironmentConnections object, both
parts of the middleware layer. This last object maintains the
architectural constraints common to all users, while theLo-
calUserSite contains the profile of each user. For instance, if
different implementations of the same aspect are available
in a given site, theLocalEnvironmentSite will contain the
list of all of them, while theLocalUserSite will indicate the
concrete implementation that has to be used for a specific
user.

As shown in Figure 1, neither the components nor the
aspects contain any direct reference to each other, enabling
their dynamic binding. As a consequence, both components
and aspects implementations can be replaced without af-
fecting the application execution. In addition, DAOP offers
a set of communication primitives for sending and broad-
casting messages, which are also available at theCompo-
nent class level—the root of any DAOP component. Like-
wise, all DAOP aspects should inherit from theAspect class,
which implements theeval() primitive. This method is the
one invoked by the platform in order to evaluate the aspect.
The precise moment in which the aspect is evaluated (be-
fore or after a method invocation, or before or after a mes-
sage delivery/reception) will be determined by the way the
system designer has specified it in the application’s archi-
tecture, which is explicitly described in theLocalEnviron-
mentSite.

2.2. Problems Found

Once DAOP was finished, we hit two major problems.
The first one was about designing and documenting a
methodology that could make effective use of DAOP for
building distributed applications. In that moment we dis-
covered that it was very difficult to differentiate between
some of the entities that live at separate (conceptual) lev-
els, especially when they share names. For instance, the
software engineer could use “components” and “aspects” to
design the system at the software architecture level, which
are somehow different entities from DAOP’s components
and aspects. Even though a mapping can be defined be-
tween them, they must not be confused. As a matter of fact,
components at the architecture level need to be mapped to
DAOP-Components (which are the executable “component
instances”) and to DAOP-ComponentInfo objects (which

contain information about where the component instances
are, how to deploy them, etc.).

The second problem was about implementation and evo-
lution. We had implemented DAOP using Java-RMI. How
to move it to EJB or CORBA? Likewise, how could we
separate what was DAOP-specific from what was inherited
from the supporting middleware and programming model?
DAOP was designed to be independent from the support-
ing language and distributed object platform. However, this
was difficult to document by just using UML profiles.

As we found out, one of the core reasons behind those
problems is that each UML profile sits at one particu-
lar conceptual level, i.e., UML profiles are very good for
defining the entities that live in a particularmodel (in the
MDA sense), as well as the relationships among those enti-
ties. However, UML profiles in isolation are not expressive
enough for relating entities at different levels, and for defin-
ing mappings and transformations between them. This is
why in the original UML profile for DAOP some entities
from different conceptual levels appear intermixed.

In this sense, the two main entities of DAOP—from the
application’s designer point of view—are the components
and the aspects. However, looking at the UML profile in
Figure 1, we can see how they appear together with other
entities which are also important to DAOP, but not rele-
vant for modeling applications with DAOP. For instance,
the component entity includes a reference to the middleware
platform (LocalEnvironmentSite) and to the methods that it
offers to send messages (execute(), broadcast()). This in-
formation is only relevant to the potential implementor or
maintainer of DAOP, but not to the DAOP application de-
signer.

2.3. MDA to the Rescue

We came to the conclusion that, in order to address these
problems, the first step was to identify the different con-
ceptual levels involved in the development of an application
using our DAOP platform. The following list ofmodels was
produced.

The Computational Model (C-M) focuses on the func-
tional decomposition of the system into objects which
interact at interfaces, exchanging messages and signals
that invoke operations and deliver service responses—
but without detailing the system precise architecture,
or any of its implementation details. This model basi-
cally corresponds to an ODP computational viewpoint
model of the system, or to Zachman’s Framework for
Enterprise Architecture Row 3 [13]. Entities of this
model are objects (implementing interfaces) and oper-
ations, to which we have added some constraints for
expressing extra-functional requirements (such as se-
curity or persistence, for instance).

3



The component and aspect model (CAM) defines the
basic entities and the structure of the system from an
architectural point of view. In our case, components
and aspects are the basic building blocks, following
our goal of integrating CBSD and AOSD approaches.

The DAOP platform implements the concepts of the
CAM model in a particular way. This level is still
technology-independent, since it just deals about the
way components and aspects are weaved, and how the
abstract entities of the CAM model can be represented
from the computational and engineering viewpoints—
but still independently from the middleware platform
(CORBA, EJB, .NET) or programming language used
to implement them.

The middleware platform provides a description of the
system from a technology viewpoint. In this model we
decide whether we want to implement the DAOP plat-
form using Java/RMI, CORBA, EJB, or .NET, using
their corresponding services and mechanisms.

Looking at the different levels we realized that they can
be naturally integrated using the MDA architecture, and that
we can make use of the MDA facilities for relating them. In
particular, they all can be considered as “platform models”
in the MDA terminology [6].

In MDA, a model of a system is a description or specifi-
cation of that system and its environment for some certain
purpose. Aplatform provides a set of parts and services that
can be used for building systems. Combining both concepts,
aplatform model provides a set of technical concepts, repre-
senting the different kinds of parts that make up a platform
and the services provided by that platform. It also provides,
for use in a platform specific model, concepts representing
the different kinds of elements to be used in specifying the
use of the platform by an application [6].

MDA distinguishes between platform independent mod-
els (PIM) and platform specific models (PSM). The first
ones focus on the operation of a system independently from
the platform it will be implemented in. A PSM combines
the PIM with the details that specify how that system uses a
particular type of platform.

MDA also definesmodel transformations, processes that
allow converting one model to another model of the same
system. The general model transformation from a PIM to a
PSM is illustrated by the MDA pattern, shown in Figure 2.
MDA defines many ways in which such transformation can
be done. In our case we will use MDAmappings. A map-
ping provides specifications for transforming a PIM into a
PSM for a particular platform [6]. Model instance mappings
definemarks. A mark represents a concept in the PSM,
which can be applied to an element of the PIM to indicate
how that element is to be transformed. The marks are used

Figure 2. The MDA pattern for model transfor-
mation

Figure 3. The stack with the different models
and the MDA transformations between them.

by the software architect to take the PIM and mark it for
use in a particular platform. The marked PIM is then used
to prepare a PSM for that platform. This is the approach we
will follow.

With all this, the different conceptual levels previously
described can be expressed using the MDA as Figure 3
shows. It contains four models and three transformations
between them. Please notice how each PSM of a transfor-
mation becomes the PIM of the next, and that the platform
applied in a transformation is defined in terms of an UML
profile for that platform.

4



In the drawing, our starting point is a Computational
Model of an application (theApplication’s C-M). The first
transformation uses the entities defined in the metamodel of
the UML profile for CAM to mark the C-M, together with a
set of specific mappings. The model produced by that trans-
formation contains the model of the application described
in terms of the CAM. This model is then marked using the
specific marks defined in the metamodel of the UML pro-
file for DAOP, and then transformed into a DAOP model
of the application. The only entities in this last model are
those of DAOP. In order to implement the system we trans-
form it again, using another transformation. In the drawing
we have used the UML profile for CORBA, which will pro-
duce a CORBA implementation of the system. Of course,
other implementation alternatives are possible (EJB, .NET,
even EDOC), as discussed in Section 5.

Please notice as well the homogeneous treatment of the
last part of the software development process in MDA, since
it treats implementation as another model. Actually, MDA
adopts the OMG definition ofimplementation, as a speci-
fication which provides all the information needed to con-
struct a system and to put it into operation. This structure
also keeps models “clean”, in the sense that each model
does not mix entities that belong to different conceptual lev-
els. The following sections describe all these models and
transformations in more detail.

3. Applying MDA: from C-M to CAM

3.1. An example of C-M

In this section we use a running example to describe the
transformation process from C-M to CAM. This example
is based on Virtual Office (VO) application we have devel-
oped as part of a bigger project [9]. A VO integrates differ-
ent CSCW applications and documents in ashared space.
The main goal is the construction of asecure, persistent and
integrated shared space that provides to geographically dis-
persed users theawareness they need to communicate and
collaborate as if they were co-located in a real place.

Figure 4 shows a simple specification of a virtual office
(many details have been omitted for space reasons) using a
computational viewpoint. This UML diagram contains the
metamodel of the VO, in which the main class,Room, mod-
els the shared space where users join to collaborate. Rooms
may contain a set of resources, such as documents and col-
laborative tools. Examples of collaborative tools are white-
boards, chats, and meeting applications. All user interac-
tions with aRoom are done through a graphical user inter-
face, which is represented by theInterfaceToUser class. Fi-
nally, classRoomAwareness represents the computational
objects that display awareness information about the users
and other resources currently in the room.

Figure 4. A C-M of the Virtual Office example

These classes model the functional behavior of a VO.
However, we have mentioned before a set of extra-
functional features, such assecurity, persistence andaware-
ness that need to be modeled, too. We have used UML de-
pendencies and constraints to model such extra-functional
requirements. For instance, the{persistent} constraint ap-
pears in theRoom and theCollaborativeTool classes, mean-
ing that the information owned by a room, and the data gen-
erated by users while working with the collaborative tools,
must be persistent. The{controlled access} constraint asso-
ciated to theDocument class indicates that only users with
the right kind of permissions can access a document.

While these extra-functional properties affect just a sin-
gle element (e.g., a class), there are other properties such as
authentication and awareness whose behavior may cross-
cut different classes. For instance, a user that wants toen-
ter to a room must be authenticated first, and this implies
that the user has to introduce some identification informa-
tion. Only if the user is registered in the system he or she
would join the room. This behavior is represented in Fig-
ure 4 by a dependency relationship from theenter() method
in theInterfaceToUser class to thejoin() method in theRoom
class. Similarly, a dependency relationship from theupda-
teUserState() method in theRoomAwareness class to the
join() method in theRoom class indicates that once a user
joined the room, theRoomAwareness class must be noti-
fied to display the updated user awareness information.

The fact that some of these extra-functional requirements
clearly crosscut several modeling elements lead us to use
AOSD technologies, as the natural candidate for modeling
and implementing the system.

5



3.2. The Component and Aspect Model (CAM)

Most of the advances and achievements in AOSD are at
the programming language level, but there is still a lack of
widely-agreed high level notations for expressing and mod-
eling aspects, specially those that model aspects indepen-
dently from the implementation language, supporting mid-
dleware, and weaving mechanisms used. A standard UML
notation would greatly facilitate to identify and express as-
pects at design level.

In the meantime before such a standard notation
emerges, we have defined our own “Component and As-
pect Model” (CAM), which tries to address many of the
requirements of component- and aspect-based applications.
Figure 5 shows the Metamodel of CAM (part of the UML
Profile we have defined for it), that defines the main entities
of CAM and the relationships among them. These entity
names are the ones that can then be used as UML stereo-
types for modeling applications using CAM.

In CAM, following the standard practices of CBSD and
AOSD, components interact by exchanging messages and
by emitting events. Aspects can be applied to (incoming
and outgoing) messages, events, and also to component op-
erations (on initialization, before or after an operation exe-
cution, etc.).

The main entities of the CAM model areComponents
andAspects. Although in principle there is no restriction
on the granularity of these elements, the way they are com-
posed may impose some recommendations about their size
and level of encapsulation. Thus, if components are dis-
tributed and interact by exchanging messages, and we want
aspects to be dynamically composed at run-time by the un-
derlying platform, we may probably wish to model both
components and aspects as high-level, black-box, coarse-
grained entities (e.g., as in DAOP or JAC [8]). However,
those aspects that only contain a couple of sentences can
usually be much better modeled by fine-grained white-box
aspects that are applied directly to components (e.g., as in
AspectJ). Since CAM was devised as a general model, it of-
fers both possibilities and hence defines different “applies
to” relationships for aspects (see Figure 5). Nevertheless,
the distributed nature of the applications we are trying to de-
sign with CAM clearly moves us to consider the first case,
and therefore in the following we will consider both compo-
nents and aspects as coarse-grained, encapsulated entities,
that can be later dynamically composed at run-time by the
distributed DAOP platform.

Since in the CAM model aspects are treated as “special”
kinds of components, both components and aspects share
some common features. For instance, both may have a set of
StateAttribute that will represent their public state, i.e., the
information that should be made persistent—to be able to
restore the state of a component or aspect instance. This in-

Figure 5. Metamodel of CAM

formation is used for implementing some requirements such
as fault tolerance or persistence.

In order to detach components and aspects interfaces
from their final implementations, we assign a unique role
name (in classRole) to reference both components and as-
pects. These role names are architectural names that will be
used for component-aspect composition and interaction, al-
lowing loosely coupled communication among them—i.e.,
no hard-coded references need to be used for exchanging in-
formation, but just the role name of the target of a message.
In addition, components can also be addressed by a unique
identifier (classCID) that refers to a component instance, in
case particular instances need to be addressed.

The AOSD community offers different approaches for
weaving aspects, depending on the points where the point-
cuts can be placed. Some approaches support the defini-
tion of pointcuts at anyplace of the code (e.g., before, after,
around, ...), mainly because they are based on code inser-
tion. Other approaches use different kinds of message in-
terception, so the aspect evaluation is triggered by the de-
livery of a message or an event. This allows aspects to be
applied to black-box components, closely to the CBSD phi-
losophy. In CAM we have tried to produce a general model,
and therefore CAM-aspects can be applied to the compo-
nents’s methods (allowing the former approaches), or just
when a message or event is sent or received (allowing the

6



Figure 6. Marked C-M

latter ones)—see the dependency relationships in Figure 5.
We understand the meaning of messages and events in the
CBSD sense, since events are messages with no information
about the source and/or target component. In this case, the
platform resolves the target component(s) by using a coor-
dination aspect.

Since software components usually have some context
dependencies, i.e, sometimes they need to share data, the
Property class encapsulates this kind of data dependency.
Properties can also be used to solve dependencies be-
tween non-orthogonal aspects. Properties are identified by
a unique name, their type, and current value.

3.3. CAM Markings and transformations

So far we have described a C-M for the VO system, and
the Metamodel of CAM. Let us consider now how the C-M
can be transformed into a CAM model of the Virtual Office
application using the MDA mechanisms.

In order to define this transformation we will “mark”
the C-M using the classes defined in the CAM metamodel
(showed in Figure 5) as stereotypes. Although not in-
cluded here for the sake of brevity, the full UML profile
for CAM not only contains the classes that comprise its
metamodel, but also information about the UML elements
to which those class names can be applied as stereotypes.

Figure 7. Marked C-M Collaboration Diagram

For instance, only UML classes can be stereotyped asCom-
ponents, but no other UML elements such as constraints
or notes. However, many different UML elements can be
marked asAspect, such as classes, method constraints, de-
pendency relationships between methods, association ends
of interaction diagrams, etc. The transformation process
will apply different mapping rules for the same mark de-
pending on the marked element.

7



Figure 8. Transformed Diagram

After applying the marks defined in the CAM meta-
model, we obtain the marked C-M showed in Figure 6. It is
important to notice that marking an element as aComponent
or Aspect requires to specify the role name that the software
developer wants to assign to that component or aspect (it is
a mandatory attribute of a CAM entity). Intuitively, this
is needed because components and aspects in our model are
always addressed by the “role” they will fulfil in the system.

Not only class diagrams can be marked, but all kinds of
UML diagrams. As an example, Figure 7 shows a marked
collaboration diagram. The original (unmarked) diagram
specified what happens when the user instructs the sys-
tem (using the GUI interface object) that wants toenter()
a room: the instance of theInterfaceToUser class invokes
the join() method of an instance of theRoom class. In this
case we have marked both classes as components, and the
join() method as a CAM message. We have also marked the
ends of this association with twoAspect marks that have
role namesauthentication andawareness.

Once the diagram is marked, the transformation process
from C-M to CAM describes a set ofmapping rules for each
of the elements. The result of the application of such map-
ping rules in this case is a class diagram, which is shown in
Figure 8.

Generally, a transformation defines a whole set of map-
ping rules, one for each mark and for each marked element.
In order to illustrate the mapping rules, we will describe
here the three rules that have been applied to the marked
(C-M) collaboration diagram in Figure 7 to obtain the cor-
responding (CAM) class diagram shown in Figure 8.

1. Components transformation. This rule transforms
UML classes marked asComponent in the C-M, to
UML classes in the CAM. For each of the C-M classes,
two CAM classes are produced, and a 1-to-1 asso-

ciation between them. The first class represents the
CAM component (stereotyped�Component�), and
the second one a CAM role (stereotyped�Role�)—
whosename attribute holds the name of the role spec-
ified in the mark. For instance, this rule can be applied
to C-M classesInterfaceToUser andRoom, which are
marked asComponent with roles “user” and “room”,
respectively. The result of applying this mapping rule
to these classes produces the four UML classes (Inter-
faceToUser, InterfaceToUserRole, Room, and Room-
Role) shown in Figure 8, with the stereotypes and re-
lationships defined for them.

2. Messages transformation. This mapping rule trans-
forms UML elements of a C-M collaboration diagram
marked asMessage to UML classes in the CAM with
the �Message� stereotype. Each of these classes
will be associated to the CAM classes that model the
role names of the source and target component(s) of
the message. Asend association class will also be
created between the role name of the source compo-
nent and the message. Similarly, areceive association
class is created between the message class and the role
name of the target component. The example in Fig-
ure 8 shows the effect of applying this mapping rule to
the collaboration diagram in Figure 7.

3. Aspects transformation. As mentioned earlier, the
association ends of an association in a C-M collabora-
tion diagram can be marked asAspect, indicating that
a given aspect (identified by its role name) should be
applied when a message is sent/received at that end.
These marks will be transformed to UML classes in
CAM, stereotyped�Aspect�, and a dependency re-
lationship (applies to) will link the aspect class to the

8



operation it applies to. As we do for components, we
create in CAM two classes for each element marked as
Aspect, one modelling the aspect and other modelling
the aspect role name. In our example we have two as-
pects:Awareness andAuthentication, which are trans-
formed into the classes and dependencies relationships
shown in Figure 8.

4. Applying MDA: from CAM to DAOP

Once we have a CAM model of an application, in this
section we will discuss how it can be transformed into its
corresponding DAOP model. The first thing we need to de-
fine in order to achieve such a transformation is a UML pro-
file for the DAOP platform, and then we need to define the
mapping rules between the metamodels of CAM and DAOP.

4.1. The DAOP Platform

In the first place, we need to realize that the concepts
of “components” and “aspects” at the DAOP level differ
from the same concepts at the CAM level. More pre-
cisely, DAOP components and aspects refer to the CAM-
component and CAM-aspect “instances”, and therefore the
information handled by DAOP about them should only con-
tain how to locate and deploy them, as well as the services
they offer. More precisely, the new metamodel of DAOP
only contains information about the services and facilities
that the DAOP offers to components and aspects (the ele-
ments that appear above theDAOP Platform class in Fig-
ure 9), together with the information the platform should
store to provide such services (the classes below theDAOP
Platform class in Figure 9). Please notice the difference be-
tween this new metamodel and the original one (shown in
Figure 1).

DAOP Services and facilities. Since CAM components
and aspects are able to create or destroy components, DAOP
defines the corresponding methods as part of theCompo-
nentFactory interface. Aspects may also create or delete
other aspects using theAspectFactory service. For example,
a monitor aspect would initiate a fault tolerance aspect after
observing some anomalies in the behavior of the system.

DAOP also offers a set of component communica-
tion primitives. As in other component platforms (e.g.,
CORBA), DAOP allows components to send synchronous
and asynchronous messages. Please notice that the CAM
model only specified that components could send messages,
but gave no details about how this could be implemented,
allowing for both communication mechanisms. DAOP also
allows components to throw events to other components,
although events do not specify the targets. This mecha-
nism is very useful to decouple components, and is spe-

cially well suited to enable components and aspects re-use.
DAOP does not specify how to implement the distribution
of events, allowing the implementor of DAOP to decide the
preferred mechanism (e.g. publish-and-subscribe mecha-
nism).

All DAOP-aspects should implement theAspectEvalua-
tionService interface. This is a mandatory requirement since
the platform will invoke theeval() method to evaluate an as-
pect. This is the only requirement an aspect must fulfill to
be recognized by the platform as a valid DAOP aspect im-
plementation.

Another important feature of software component in-
stances is the use ofresources, in the sense Szyperski de-
fines them as “typed frozen objects” which are used to
maintain a certain degree of data dependency with the envi-
ronment [12]. Furthermore, based on our own experiences
we also realized that we needed some kind of service that
allowed all entities in the platform to store and consult infor-
mation in order to configure themselves. ThePropertySer-
vice shown in Figure 9 offers methods to set and get shared
data (i.e., properties) from the platform.

One of the facilities offered by the DAOP platform is the
persistence service, which provides all the methods required
to store and retrieve component and aspect states. The im-
plementation of this service is responsibility of the devel-
oper. This service is also the natural candidate to imple-
ment a persistence aspect, or some kinds of fault tolerance
mechanisms.

Architecture of DAOP Platform. The internal structure
of the DAOP platform is basically the one originally showed
in Figure 1, although slightly improved since it now reflects
the fact that “architectural” components and aspects live at
a different level, and that DAOP only maintains information
about the component and aspect instances. The DAOP plat-
form contains anApplicationArchitecture object that stores
the architectural description of the application; and theAp-
plicationContext that holds the current list of components,
aspects and properties instances. DAOP maintains the def-
inition of the components’ and aspects’ services inside the
application architecture, and references to their local or re-
mote implementations in the application context. TheAppli-
cationArchitecture is described in terms of components, as-
pects and a set of composition rules. As shown in Figure 9,
component and aspect composition is defined in terms of
their role names and a message name. This class contains
explicitly when each aspect has to be applied, following the
CAM model. More than one component instance may ful-
fil the same role within an application, but all of them must
conform to the same component specification (likewise for
aspects).

9



Figure 9. Metamodel of DAOP

4.2. DAOP Markings and Transformations

By adopting the same methodology that we applied for
CAM, we have to define the marks and transformations
needed to obtain a model of the application’s CAM, ex-
pressed in terms of DAOP entities. Basically the informa-
tion that the transformation process has to generate from
the marked CAM is: the communication mechanisms be-
tween components, the aspect evaluation mechanisms, and
the information that describes the architecture of the CAM
application.

A CAM model for a specific application will specify the
messages and events that components and aspects in the
application are able to send and consume. On the other
hand, the DAOP platform provides communication primi-
tives to send synchronous and asynchronous messages, and
to broadcast them. Therefore, messages in CAM have to be
marked to specify which DAOP communication mechanism

should be used.

Similar to component communication, the aspect joint
points that we defined in CAM have to be mapped to
DAOP joint points. As shown in theAspectJointPoint
enumeration type in Figure 9, DAOP aspects can be ap-
plied to incoming messages and events (MSGIN), outgo-
ing messages and events (MSGOUT), outgoing response
messages (REPLYOUT), and incoming response messages
(REPLY IN). Taking into account these joint points, CAM
aspects that are applied when a component or an aspect
sends a message or an event, will correspond to DAOP
MSG OUT aspects. Similarly, CAM aspects applied in the
reception of a message or event are considered MSGIN as-
pects in DAOP.

In addition to aspects that affect the emission or recep-
tion of a message or event, other kind of CAM aspects
are those applied to component operations (on initializa-

10



tion, before or after an operation execution, etc.). How-
ever, DAOP does not distinguish between applying an as-
pect at the reception of a message or event, and applying it
before a method execution in a component. Thus, CAM as-
pects to be applied before a method execution are mapped
to MSG IN aspects. Similarly, CAM aspects that have to
be applied after the execution of a method will correspond
to REPLY OUT aspects in DAOP.

Of particular interest in the CAM to DAOP transforma-
tion is the information that DAOP stores about the architec-
ture of the CAM application (using theApplicationArchitec-
ture object). As part of the CAM to DAOP transformation
process, an XML document that contains the description of
all the components and aspects in the CAM model is gen-
erated. Components and aspects are identified by their role
names and are described in terms of their provided and re-
quired interfaces. The XML document contains also the
composition rules described in the CAM model. (That is,
the document is nothing else but the UML diagrams of the
CAM model expressed in XML.)

During the execution, when an instance of the DAOP
platform is created, the XML document is parsed and the
structure of the CAM application is stored in theApplica-
tionArchitecture object (see Figure 9). This is precisely what
we called the Application’s DAOP model in Figure 3. The
DAOP platform will use this information to deploy com-
ponents and aspects and to compose them dynamically at
runtime. Please notice the importance of this fact, since
all the architectural information described in the UML dia-
grams at the CAM level can be used by the DAOP platform
as-is. This avoids the usual “gap”, or loss of information,
between different conceptual levels—e.g., the information
about the software architecture of an application is usually
lost at implementation level.

5. Applying MDA: Implementing DAOP in Dif-
ferent Platforms

Once we have a model of the system using the DAOP
elements, we could think of implementing the system in a
particular distributed object platform such as CORBA, EJB,
.NET, etc. Following the MDA approach, we could consider
the DAOP platform as a PIM, and then transform it to one
of these platform models. This is currently part of our on-
going work.

In Figure 3 we showed a possible implementation, using
the UML profile for CORBA to mark the DAOP model ele-
ments, and defining a set of mappings from DAOP marked
elements to CORBA elements. Since these elements are just
CORBA interfaces and elements, the transformed model
would be (easily?) implementable in CORBA.

As a matter of fact, if we count with a CORBA imple-
mentation of the DAOP elements and mechanisms, the sys-

Figure 10. Two other alternatives for imple-
menting the system

tem developer would need to provide just the code for the
application-specific objects, i.e., their behavior. The rest of
the system, including all the services provided by the DAOP
platform, as well as many of the most commonly used as-
pects, would be already implemented. At this level, the de-
gree of reuse obtained is comparable to the one provided by
traditional Application Frameworks [3], in which the user
simply has to customize the application-specific classes in
order to build the final system. The benefits of using the
MDA approach is that the user can “work” at a higher level
of abstraction, and then use the MDA transformations to
help him refine the model.

Another important benefit of using MDA is that it al-
lowed DAOP to be defined independently from the under-
lying implementation platform. DAOP is currently imple-
mented using Java/RMI, but we were concerned on how
to “move” it to other middleware platforms. Therefore,
apart from the CORBA implementation shown in Figure 3,
it would relatively easy to define other implementation al-
ternatives. For instance, we could also defined marks and
mappings to EJB. Or even use EDOC as an interim plat-
form, and define transformations from DAOP to EDOC. In
this case we could make use of the transformations currently
being defined from EDOC to CORBA, to EJB, or in the fu-
ture to any other distributed object platform. The result-
ing “stacks” for two of the alternatives (EDOC+CORBA,
or just EJB) is shown in Figure 10. An interesting exercise
here would be to compare the two resulting implementa-
tions obtained by: (1) directly applying the UML profile
for CORBA to the DAOP model; and (2) using DAOP to
EDOC, and then from EDOC to CORBA. Alternatively, we
can also define a UML profile for Java/RMI, and compare
the result of such MDA transformation with our current im-
plementation of DAOP.

11



6. Concluding Remarks

In this paper we have presented our experience with
MDA, and how it has been useful for identifying and sep-
arating different conceptual levels, which appeared inter-
mixed in a component- and aspect-based middleware plat-
form for the development of distributed collaborative appli-
cations.

We found out that it is not only a matter of establish-
ing such conceptual differences, something which can be
achieved in other ways. The main—and unique—value of
MDA is the provision of the right kind of mechanisms for
expressing the different levels, the entities of each one, and
for defining transformations between them.

The result is a set of models which allow an easy docu-
mentation, customization, and evolution of the systems be-
ing produced. Furthermore, many design and implementa-
tion alternatives are also possible, since it is just a matter of
building the “stack” of models that suits our stakeholder’s
particular requirements. In addition, the upper levels of
the stack provide very high-level conceptual models, which
are completely independent from the underlying platforms.
In particular, the CAM provides a very general model for
designing component- and aspect-based applications, inde-
pendently from the supporting CBSD or AOSD technology
finally used to architect or implement the system.

In this paper we have only used part of the MDA, without
entering into its facilities for model storage and exchange,
or using the Computation Independent Model (CIM). But
even focusing on model transformations, there are still
many unresolved questions in MDA. For instance, provid-
ing some kind of automated support for the model transfor-
mations is pending. The MDA Guide offers a first clas-
sification of the different sorts of model transformations,
but we have seen that their application-specific nature make
them difficult to automate. As described in Section 4.2, we
have automated the transformation from CAM to DAOP,
using a XML-based architectural description language [11]
to represent the application’s CAM. This was easy because
DAOP was designed to be faithful to the CAM model, and
specially because DAOP makes use of the application’s ar-
chitecture as defined by the CAM diagrams. However, we
are not sure about how far (or close) we are from automat-
ing the rest of the MDA transformations. We also need to
complete our implementation of DAOP in different middle-
ware platforms, and compare the efficiencies of the imple-
mentations of the VO application obtained through the dif-
ferent mappings (using direct mappings of UML Profile for
CORBA or EJB, or the indirect mappings through EDOC
and then to CORBA or EJB). We also plan to study how
the process of creating marks can be generalized, and how
many mapping rules can be identified. Finally, some of the
MDA core concepts still need to be further clarified, namely

the exact nature of the CIM, and how to map the business
model of a system (probably a combination of the ODP
enterprise and information viewpoint specifications) to its
computational model using the MDA mechanisms. In any
case, we need to count first with a set of examples and ex-
periences that make use of MDA. Our contribution tries to
provide a small step in this direction.

Acknowledgements We are very grateful to the anony-
mous referees for their insightful comments and sugges-
tions, that greatly helped improving the contents and read-
ability of the paper, and for providing very useful hints and
guidelines for future extensions. This work has been sup-
ported by Spanish CICYT Project TIC2002-04309-C02-02.

References

[1] J. Cheesman and J. Daniels.UML Components. A simple
process for specifying component-based software. Addison-
Wesley, 2000.

[2] D. F. D’Souza and A. C. Wills.Objects, Components, and
Frameworks with UML. The Catalysis Approach. Addison-
Wesley, 1999.

[3] M. E. Fayad and D. C. Schmidt. Object-oriented application
frameworks.Commun. ACM, 40(10):32–38, Oct. 1997.

[4] L. Fuentes, J. M. Troya, and A. Vallecillo. Using UML pro-
files for documenting web-based application frameworks.
Annals of Software Engineering, 13:249–264, 2002.

[5] G. Kiczales et al. Aspect-oriented programming. InProc.
of ECOOP’97, number 1241 in Lecture Notes in Computer
Science, pages 220–242. Springer-Verlag, 1997.

[6] Object Management Group.MDA Guide (Draft Version 2),
Jan. 2003. OMG documentab/2003-01-03.

[7] OMG. Model Driven Architecture. A Technical Perspec-
tive. Object Management Group, Jan. 2001. OMG docu-
mentab/2001-01-01.

[8] R. Pawlack, L. Seinturier, L. Duchien, and G. Florin. JAC:
A flexible and efficient framework for AOP in Java. InProc.
of Reflection’01. Springer-Verlag, Sept. 2001.

[9] M. Pinto, M. Amor, L. Fuentes, and J. M. Troya. Collabora-
tive virtual environment development: An aspect-oriented
approach. InInternational Workshop on Distributed Dy-
namic Multiservice Architectures (DDMA’01), pages 97–
102, Arizona, Apr. 2001. IEEE Computer Society Press.

[10] M. Pinto, L. Fuentes, M. Fayad, and J. M. Troya. Separation
of coordination in a Dynamic Aspect-Oriented Framework.
In Proc. of the First International Conference on AOSD,
pages 134–140, The Netherlands, Apr. 2002. ACM.

[11] M. Pinto, L. Fuentes, and J. M. Troya. DAOP-ADL: An ar-
chitecture description language for dynamic component and
aspect-based development. InProc. of Generative Program-
ming and Component Engineering (GPCE’03), Sept. 2003.

[12] C. Szyperski. Component Software. Beyond Object-
Oriented Programming. Addison-Wesley, 2 edition, 2002.

[13] J. A. Zachman. The Zachman Framework: A Primer for
Enterprise Engineering and Manufacturing. Zachman In-
ternational, 1997.http://www.zifa.com.

12


